Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T20:30:34.214Z Has data issue: false hasContentIssue false

The independence of connectives

Published online by Cambridge University Press:  12 March 2014

Timothy Smiley*
Affiliation:
University of Cambridge

Extract

In a paper in this Journal [1], McKinsey used as a criterion for the independence (non-definability) of a connective F in a propositional calculus L, the existence of a matrix for L in which the functions corresponding to all the connectives other than F are class-closing over some subset S of the elements, while the function corresponding to F is not class-closing over S (i.e., for a certain choice of arguments in S its value is not in S).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] McKinsey, J. C. C., Proof of the independence of the primitive symbols of Heyting's calculus of propositions, this Journal , Vol. 4 (1939), pp. 155158.Google Scholar
[2] Ackermann, Wilhelm, Widerspruchsfreier Aufbau der Logik I, this Journal , Vol. 15 (1950), pp. 3357.Google Scholar
[3] Harrop, R., An investigation of the prepositional calculus used in a particular system of logic, Proceedings of the Cambridge Philosophical Society, Vol. 50 (1954), pp. 495512.CrossRefGoogle Scholar
[4] McKinsey, J. C. C., A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology, this Journal , Vol. 6 (1941), pp. 117134.Google Scholar
[5] Padoa, A., Essai d'une théorie algébraique des nombres entiers, précédé d'une introduction logique à une théorie deductive quelconque, Bibliothèque du Congrès International de Philosophie, Vol. 3 (1901), pp. 309365.Google Scholar
[6] Heyting, A., Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preusslschen Akademie der Wissenschaften, Physikalisch-mate-matische Klasse, 1930, pp. 4256.Google Scholar
[7] Jaskowski, S., Recherches sur le système de la logique intuitioniste, Actes du Congrès International de Philosophie Scientifique, Paris 1935, part VI, pp. 5861.Google Scholar
[8] Suszko, Roman, W sprawie logiki bez aksjomatów, Kwartalnik fllosoficzny, Vol. 17 (1948), pp. 199205.Google Scholar