Hostname: page-component-6587cd75c8-rlsgg Total loading time: 0 Render date: 2025-04-24T03:24:12.812Z Has data issue: false hasContentIssue false

GENERIC DERIVATIONS ON ALGEBRAICALLY BOUNDED STRUCTURES

Published online by Cambridge University Press:  13 November 2024

ANTONGIULIO FORNASIERO
Affiliation:
DIPARTIMENTO DI MATEMATICA E INFORMATICA “ULISSE DINI” UNIVERSITÀ DI FIRENZE E-mail: [email protected] URL: https://sites.google.com/site/antongiuliofornasiero/
GIUSEPPINA TERZO*
Affiliation:
DIPARTIMENTO DI MATEMATICA E APPLICAZIONI “RENATO CACCIOPPOLI” UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II”

Abstract

Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$, has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T^{\delta }$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aschenbrenner, M., van den Dries, L., and van der Hoeven, J., Asymptotic Differential Algebra and Model Theory of Transseries, Princeton University Press, Princeton, 2017.Google Scholar
Blum, L., Differentially closed fields: A model-theoretic tour , Contributions to Algebra (Bass, H., Cassidy, P. J., and Kovacic, J., editors), Academic Press, New York, London, 1977, pp. 3761. doi: 10.1016/B978-0-12-080550-1.50009-3.CrossRefGoogle Scholar
Borrata, A., Model theory of tame pairs of closed ordered differential fields , Ph.D. thesis, Università della Campania, 2021.Google Scholar
Brihaye, T., Michaux, C., and Rivière, C., Cell decomposition and dimension function in the theory of closed ordered differential fields . Annals of Pure and Applied Logic, vol. 159 (2009), nos. 1–2, pp. 111128.CrossRefGoogle Scholar
Brouette, Q., Kovacsics, P. C., and Point, F., Strong density of definable types and closed ordered differential fields . Journal of Symbolic Logic, vol. 84 (2019), no. 3, pp. 10991117.CrossRefGoogle Scholar
Chatzidakis, Z., Model theory of fields with operators – A survey , Logic without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics (Villaveces, A., Hirvonen, Å., Kontinen, J., Kossak, R., and Villaveces, A. editors), De Gruyter, Berlin, München, Boston, 2015, pp. 91114.CrossRefGoogle Scholar
Chatzidakis, Z. and Pillay, A., Generic structures and simple theories . Annals of Pure and Applied Logic, vol. 95 (1998), no. 1, pp. 7192.CrossRefGoogle Scholar
Cubides Kovacsics, P. and Point, F., Topological fields with a generic derivation . Annals of Pure and Applied Logic, vol. 174 (2023), no. 3, Article no. 103211, 38.CrossRefGoogle Scholar
van den Dries, L., Model theory of fields: Decidability, and bounds for polynomial ideals, Advised by van Dalen, D., Ph.D. thesis, Utrecht University, 1978.Google Scholar
van den Dries, L., Dimension of definable sets, algerbraic boundedness and Henselian fields . Annals of Pure and Applied Logic, vol. 45 (1989), pp. 189209.CrossRefGoogle Scholar
van den Dries, L. and Schmidt, K., Bounds in the theory of polynomial rings over fields. A nonstandard approach . Inventiones Mathematicae, vol. 76 (1984), no. 1, pp. 7791.CrossRefGoogle Scholar
Fehm, A., Subfields of ample fields. Rational maps and definability . Journal of Algebra 323 (2010), no. 6, pp. 17381744.CrossRefGoogle Scholar
Fornasiero, A., Dimensions, matroids, and dense pairs of first-order structures . Annals of Pure and Applied Logic, vol. 162 (2011), no. 7, pp. 514543.CrossRefGoogle Scholar
Fornasiero, A. and Kaplan, E., Generic derivations on o-minimal structures . Journal of Mathematical Logic, vol. 21 (2021), Article no. 2150007.CrossRefGoogle Scholar
Fornasiero, A. and Terzo, G., Exponential fields: Lack of generic derivations, preprint, 2024. arXiv:2407.14840v1.Google Scholar
Freitag, J., Sánchez, O. L., and Li, W., Effective definability of Kolchin polynomials . Proceedings of the American Mathematical Society, vol. 148 (2020), no. 4, pp. 14551466.CrossRefGoogle Scholar
Guzy, N. and Point, F., Topological differential fields . Annals of Pure and Applied Logic, vol. 161 (2010), no. 4, pp. 570598.CrossRefGoogle Scholar
Guzy, N. and Point, F., Topological differential fields and dimension functions . The Journal of Symbolic Logic, vol. 77 (2012), no. 4, pp. 11471164.CrossRefGoogle Scholar
Guzy, N. and Rivière, C., Geometrical axiomatization for model complete theories of differential topological fields . Notre Dame Journal of Formal Logic, vol. 47 (2006), no. 3, pp.331341.CrossRefGoogle Scholar
Hart, B. and Valeriote, M., Lectures on Algebraic Model Theory, vol. 15 , Fields Institute Monographs, American Mathematical Society (AMS), Providence, RI, 2002. doi: 10.1007/978-0-8218-2706-2.Google Scholar
Johnson, W., Forking and dividing in fields with several orderings and valuations . Journal of Mathematical Logic, vol. 22 (2022), no. 1, Article no. 2150025, 43.CrossRefGoogle Scholar
Johnson, W. and Ye, J., Curve-excluding fields, preprint, 2023. arXiv:2303.06063.Google Scholar
Johnson, W. and Ye, J., A note on geometric theories of fields . Model Theory, vol. 2 (2023), no. 1, pp. 121132.CrossRefGoogle Scholar
Junker, M. and Koenigsmann, J., Schlanke Körper (slim fields) . The Journal of Symbolic Logic, vol. 75 (2010), no. 2, pp. 481500.CrossRefGoogle Scholar
Kolchin, E. R., Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, vol. 54, Academic Press, New York, 1973, pp. xviii+446.Google Scholar
Lang, S., Algebra, 3rd ed., Graduate Texts in Mathematics, 211, Springer, New York, 2002, pp. xvi+914.CrossRefGoogle Scholar
León Sánchez, O., Algebro-geometric axioms for $DCF0,m$ . Fundamenta Mathematicae, vol. 243 (2018, no. 1), pp. 18.CrossRefGoogle Scholar
León Sánchez, O. and Moosa, R., The model companion of differential fields with free operators . Journal of Symbolic Logic, vol. 81 (2016), no. 2, pp. 493509.CrossRefGoogle Scholar
León Sánchez, O. and Tressl, M., On ordinary differentially large fields, preprint, 2023, arXiv:2307.12977.Google Scholar
León Sánchez, O. and Tressl, M., Differentially large fields . Algebra Number Theory, vol. 18, no. 2 (2024), pp. 249280.CrossRefGoogle Scholar
Marker, D., Messmer, M., and Pillay, A., Model Theory of Fields, Lecture Notes in Logic, Cambridge University Press, Cambridge, 2017.CrossRefGoogle Scholar
McGrail, T., The model theory of differential fields with finitely many commuting derivations . The Journal of Symbolic Logic, vol. 65 (2000), no. 2, pp. 885913.CrossRefGoogle Scholar
Mohamed, S., The uniform companion for large fields with free operators in characteristic zero, preprint, 2023. arXiv:2311.01856.Google Scholar
Montenegro, S. and Rideau-Kikuchi, S., Pseudo T-closed fields, preprint, 2023. To appear in Model Theory.Google Scholar
Moosa, R., Six lectures on model theory and differential-algebraic geometry, preprint, 2022. arXiv:2210.16684.Google Scholar
Moosa, R. and Scanlon, T., Model theory of fields with free operators in characteristic zero . Journal of Mathematical Logic, vol. 14 (2014, no. 02), 1450009.CrossRefGoogle Scholar
Pierce, D., Differential forms in the model theory of differential fields . The Journal of Symbolic Logic, vol. 68 (2003), no. 3, pp. 923945.CrossRefGoogle Scholar
Pierce, D., Fields with several commuting derivations . The Journal of Symbolic Logic, vol. 79 (2014), no. 1, pp. 119.CrossRefGoogle Scholar
Pierce, D. and Pillay, A., A note on the axioms for differentially closed fields of characteristic zero . Journal of Algebra, vol. 204 (1998), no. 1, pp. 108115.CrossRefGoogle Scholar
Pillay, A., An Introduction to Stability Theory, English. Reprint of the 1983 original published by Clarendon Press. Mineola: Dover Publications, 2008.Google Scholar
Point, F., Ensembles définissables dans les corps ordonnés différentiellement clos . Comptes Rendus Mathematique é matique, vol. 349 (2011), nos. 17–18, pp. 929933.CrossRefGoogle Scholar
Rivière, C., The model theory of $m$ -ordered differential fields . MLQ, vol. 52 (2006), no. 4, pp. 331339.CrossRefGoogle Scholar
Rivière, C., The theory of closed ordered differential fields with $m$ commuting derivations . Comptes Rendus de l’Académie des Sciences, vol. 343 (2006), no. 3, pp. 151154.Google Scholar
Rivière, C., Further notes on cell decomposition in closed ordered differential fields . Annals of Pure and Applied Logic, vol. 159 (2009), no. 1–2, pp. 100110.CrossRefGoogle Scholar
Robinson, A., On the concept of a differentially closed field . Bulletin of the Research Council of Israel Section F, vol. 8F (1959), pp. 113128.Google Scholar
Sacks, G. E., Saturated Model Theory, 2nd ed., World Scientific, Hackensack, NJ, 2010. doi: 10.1142/6974.Google Scholar
Scanlon, T., Model theory of valued D-fields , Ph.D. thesis, Harvard, Cambridge, 1997.Google Scholar
Scanlon, T., A model complete theory of valued D-fields . The Journal of Symbolic Logic, vol. 65, no. 4 (2000), pp. 17581784.CrossRefGoogle Scholar
Schoutens, H., The Use of Ultraproducts in Commutative Algebra, Lecture Notes in Mathematics, 1999, Springer, Berlin, 2010, pp. x+204.CrossRefGoogle Scholar
Shelah, S., Classification Theory: and the Number of Non-Isomorphic Models, North-Holland, Amsterdam, 1990.Google Scholar
Simon, P., A guide to NIP theories Vol. 44. Lecture Notes in Logic. Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015, pp. vii+156. doi: 10.1017/CBO9781107415133.CrossRefGoogle Scholar
Singer, M. F., The model theory of ordered differential fields . The Journal of Symbolic Logic, vol. 43 (1978), no. 1, pp. 8291.CrossRefGoogle Scholar
Singer, M. F., Model theory of partial differential fields: From commuting to noncommuting derivations . Proceedings of the American Mathematical Society, vol. 135 (2007), no. 6, pp. 19291934.CrossRefGoogle Scholar
Tressl, M., The uniform companion for large differential fields of characteristic 0 . Transactions of the American Mathematical Society, vol. 357 (2005), no. 10, pp. 39333951.CrossRefGoogle Scholar
Wood, C., The model theory of differential fields of characteristic $p\ne 0$ . Proceedings of the American Mathematical Society, vol. 40 (1973), no. 2, pp. 577584.Google Scholar
Yaffe, Y., Model completion of lie differential fields . Annals of Pure and Applied Logic, vol. 107 (2001), no. 1, pp. 4986.CrossRefGoogle Scholar
Zariski, O. and Samuel, P., Commutative Algebra, vol. 1, Graduate Texts in Mathematics, Springer, Berlin, 1960.CrossRefGoogle Scholar