Article contents
Forcing and reducibilities
Published online by Cambridge University Press: 12 March 2014
Extract
We see far away, Newton said, if we stand on giants' shoulders. We take him seriously here and moreover (as appropriate to recursion-theorists) we will jump from one giant to another, since this paper is mostly an exegesis of two fundamental works: Feferman's Some applications of the notions of forcing and generic sets [4] and Sacks' Forcing with perfect closed sets [19]. We hope the reader is not afraid of heights: our exercises are risky ones, since the two giants are in turn on the shoulders of others! Feferman [4] rests on the basic works of Cohen [2], who introduced forcing with finite conditions in the context of set theory; Sacks [19] relies on Spector [24], who realized—in recursion theory—the necessity of more powerful approximations than the finite ones.
To minimize the risk we will try to keep technicalities to a minimum, choosing to give priority to the methodology of forcing. We do not suppose any previous knowledge of forcing in the reader, but we do require some acquaintance with recursion theory. After all, our interest lies in the applications of the forcing method to the study of various recursion-theoretic notions of degrees. The farther we go, the deeper we plunge into recursion theory.
In Part I only very basic notions and results are used, like the definitions of the arithmetical hierarchy and of the jump operator and their relationships.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1983
References
BIBLIOGRAPHY
- 9
- Cited by