Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T05:21:26.386Z Has data issue: false hasContentIssue false

Extensional interpretations of modal logics

Published online by Cambridge University Press:  12 March 2014

M. H. Löb*
Affiliation:
University of Leeds

Extract

By ΡL we shall mean the first order predicate logic based on S4. More explicitly: Let Ρ0 stand for the first order predicate calculus. The formalisation of Ρ0 used in the present paper will be given later. ΡL is obtained from Ρ0 by adding the rules the propositional constant □ and

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Drake, F., On McKinsey's syntactical characterization of systems of modal logic, this Journal, vol. 27 (1962), pp. 400406.Google Scholar
[2]Gentzen, G., Untersuchungen über das logische Schliessen I. Math. Zeitschrift, vol. 39 (1935), pp. 176210.CrossRefGoogle Scholar
[3]Hintikka, Jaakko, Modality and quantification. Theoria, vol. 27 (1961), pp. 119128.CrossRefGoogle Scholar
[4]Kanger, Stig, Provability in logic, Stockholm studies in Philosophy, vol. 1. Alynquist & Wiksell, 1957.Google Scholar
[5]Kreisel, G., Set theoretic problems suggested by the potential totality. Infinitistic methods, pp. 101140, Pergamon Press, 1961.Google Scholar
[6]Kripke, Saul A., Semantical analysis of modal logic I. Normal modal calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 6 (1963), pp. 6796.CrossRefGoogle Scholar
[7]Lewis, Clarence Irving and Langford, Cooper Harold, Symbolic logic. Century Company, 1932.Google Scholar
[8]Maehara, Shôji, Eine Darstellung der intuitionistischen Logik in der klassischen. Nagoya mathematical journal, vol. 7 (1954), pp. 4564.CrossRefGoogle Scholar
[9]McKinsey, J. C. C., On the syntactical construction of systems of modal logic, this Journal, vol. 10 (1945), pp. 8394.Google Scholar
[10]Quine, W. V., Reduction to a dyadic predicate, this Journal, vol. 19 (1954), pp. 180182.Google Scholar
[11]Schütte, Kurt, Beweistheorie, Springer-Verlag, 1960.Google Scholar
[12]von Wright, G. H., An Essay in modal logic. North Holland Publ. Co., 1951.Google Scholar