Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T12:03:13.469Z Has data issue: false hasContentIssue false

Diagonally Non-Computable Functions and Bi-Immunity

Published online by Cambridge University Press:  12 March 2014

Carl G. Jockusch Jr.
Affiliation:
University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801-2975, USA, E-mail: [email protected], URL: http://www.math.uiuc.edu/~jockusch/
Andrew E. M. Lewis
Affiliation:
School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK, E-mail: [email protected], URL: http://aemlewis.co.uk/

Abstract

We prove that every diagonally noncomputable function computes a set A which is bi-immune, meaning that neither A nor its complement has an infinite computably enumerable subset.

Keywords

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., and Slaman, T., Comparing DNR and WWKL, this Journal, vol. 69 (2004), pp. 10891104.Google Scholar
[2] Downey, R., Greenberg, N., Jockusch, C., and Milans, K., Binary subtrees with few labeled paths, Combinatorica, vol. 31 (2011), pp. 285303.CrossRefGoogle Scholar
[3] Downey, R. and Hirschfeldt, D., Algorithmic randomness and complexity, Springer, 2010.CrossRefGoogle Scholar
[4] Jockusch, C., Semirecursive sets and positive reducibility, Transactions of the American Mathematical Society, vol. 131 (1968), pp. 420436.CrossRefGoogle Scholar
[5] Jockusch, C., The degrees of bi-immune sets, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 135140.CrossRefGoogle Scholar
[6] Jockusch, C., Upward closure of bi-immune degrees, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 18 (1972), pp. 285287.CrossRefGoogle Scholar
[7] Jockusch, C., Degrees of functions with no fixed points, Logic, methodology, and philosophy of science VIII (Fenstad, J. E., Frolov, I. T., and Hilpinen, R., editors), North-Holland, Amsterdam, 1989, pp. 191201.Google Scholar
[8] Jockusch, C., Lerman, M., Solovay, R., and Soare, R., Recursively enumerable sets modulo iterated jumps and extensions of Arslanov's completeness criterion, this Journal, vol. 54 (1989), pp. 12881323.Google Scholar
[9] Kumabe, M. and Lewis, A. E. M., A fixed point free minimal degree, Journal of the London Mathematical Society, vol. 80 (2009), no. 3, pp. 785797.CrossRefGoogle Scholar
[10] Lachlan, A., Solution to a problem of Spector, Canadian Journal of Mathematics, vol. 23 (1971), pp. 247256.CrossRefGoogle Scholar
[11] Nies, A., Computability and randomness, Oxford University Press, 2009.CrossRefGoogle Scholar
[12] Simpson, S., Recursion theoretic aspects of the dual Ramsey theorem, Recursion theory week, Lecture Notes in Mathematics No. 1141, Springer-Verlag, Berlin, 1985, pp. 357371.CrossRefGoogle Scholar
[13] Simpson, S., Mass problems and randomness, The Bulletin of Symbolic Logic, vol. 11 (2005), no. 1, pp. 127.CrossRefGoogle Scholar
[14] Simpson, S., An extension of the recursively enumerable Turing degrees, Journal of the London Mathematical Society, vol. 75 (2007), pp. 287297.CrossRefGoogle Scholar
[15] Soare, R., Recursively enumerable sets and degrees, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar