Article contents
Descriptive complexity of finite structures: Saving the quantifier rank
Published online by Cambridge University Press: 12 March 2014
Abstract
We say that a first order formula Φ distinguishes a structure M over a vocabulary L from another structure M′ over the same vocabulary if Φ is true on M but false on M′. A formula Φ defines an L-structure M if Φ distinguishes M from any other non-isomorphic L-structure M′. A formula Φ identifies an n-element L-structure M if Φ distinguishes M from any other non-isomorphic n-element L-structure M′.
We prove that every n-element structure M is identifiable by a formula with quantifier rank less than and at most one quantifier alternation, where k is the maximum relation arity of M. Moreover, if the automorphism group of M contains no transposition of two elements, the same result holds for definability rather than identification.
The Bernays-Schönfinkel class consists of prenex formulas in which the existential quantifiers all precede the universal quantifiers. We prove that every n-element structure M is identifiable by a formula in the Bernays-Schönfinkel class with less than quantifiers. If in this class of identifying formulas we restrict the number of universal quantifiers to k, then less than quantifiers suffice to identify M and. as long as we keep the number of universal quantifiers bounded by a constant, at total quantifiers are necessary.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2005
References
REFERENCES
- 5
- Cited by