Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T20:52:28.909Z Has data issue: false hasContentIssue false

Définissabilité dans les corps de fonctions p-adiques

Published online by Cambridge University Press:  12 March 2014

Luc Bélair
Affiliation:
Département de Mathématiques et Informatique, Université de Québec à Montréal, Montréal, Québec H3C 3P8, Canada
Jean-Louis Duret
Affiliation:
Faculté des Sciences, Université d'Angers, 49045 Angers, France Équipe de Logique Mathématique, Université Paris-VII, 75251 Paris, France

Abstract

We study function fields over p-adically closed fields in the first-order language of fields. Using ideas of Duret [D], we show that the field of constants is definable, and that the genus is an elementary property.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RÉFÉRENCES

[B] Bélair, L., Théorie des modèles des corps p-adiques, Séminaire de structures algébriques ordonnées, année 1985–1986 (Delon, F. et al., éditeurs), Université Paris-VII, Paris, 1986.Google Scholar
[D] Duret, J.-L., Sur la théorie élémentaire des corps de fonctions, ce Journal, vol. 51 (1986), pp. 948956.Google Scholar
[H] Hasse, H., Number theory, Springer-Verlag, Berlin, 1980.CrossRefGoogle Scholar
[N] Narkiewicz, W., Elementary and analytic theory of algebraic numbers, PWN, Warsaw, 1974.Google Scholar