Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T12:49:48.492Z Has data issue: false hasContentIssue false

Deducibility and many-valuedness

Published online by Cambridge University Press:  12 March 2014

D. J. Shoesmith
Affiliation:
Cambridge University, Cambridge, England
T. J. Smiley
Affiliation:
Cambridge University, Cambridge, England

Extract

Lindenbaum's construction of a matrix for a propositional calculus, in which the wffs themselves are taken as elements and the theorems as the designated elements, immediately establishes two general results: that every prepositional calculus is many-valued, and that every many-valued propositional calculus is also ℵ0-valued. These results are however concerned exclusively with theoremhood, the inferential structure of the calculus being relevant only incidentally, in that it may serve to determine the set of theorems. We therefore ask what happens when deducibility is taken into consideration on a par with theoremhood. The answer is that in general the Lindenbaum construction is no longer adequate and both results fail.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anderson, Alan Ross, On the interpretation of a modal system of Łukasiewicz, The journal of computing systems, vol. 1, no. 4 (1954), pp. 209210.Google Scholar
[2]Åqvist, Lennart, Results concerning some modal systems that contain S2, this Journal, vol. 29 (1964), pp. 7987.Google Scholar
[3]Glivenko, V., Sur quelques points de la logique de M. Brouwer, Académie Royale de Belgique, Bulletins de la classe des sciences, ser. 5, vol. 15 (1929), pp. 183188.Google Scholar
[4]Gödel, Kurt, Zum intuitionistischen Aussagenkalkül, Ergebnisse eines mathematischen Kolloquiums, Heft 4 (1931/1932), p. 40.Google Scholar
[5]Halldén, Sören, On the semantic non-completeness of certain Lewis calculi, this Journal, vol. 16 (1951), pp. 127129.Google Scholar
[6]Harrop, Ronald, Some structure results for propositional calculi, this Journal, vol. 30 (1965), pp. 271292.Google Scholar
[7]Hay, Louise Schmir, Axiomatization of the infinite-valued predicate calculus, this Journal, vol. 28 (1963), pp. 7786.Google Scholar
[8]Heyting, Arend, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1930, pp. 4256.Google Scholar
[9]Hilbert, D. and Bernays, P., Grundlagen der Mathematik, vol. 2, Springer, Berlin, 1939.Google Scholar
[10]Johansson, Ingebrigt, Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio mathematica, vol. 4 (1936), pp. 119136.Google Scholar
[11]Kleene, Stephen Cole, Introduction to metamathematics, North-Holland, Amsterdam, 1952.Google Scholar
[12]Kreisel, G. and Krivine, J. L., Elements of mathematical logic, North-Holland, Amsterdam, 1967.Google Scholar
[13]Lemmon, E. J., A note on Halldén-incompleteness, Notre Dame journal of formal logic, vol. 7 (1966), pp. 296300.CrossRefGoogle Scholar
[14]Lewis, Clarence Irving and Lanoford, Cooper Harold, Symbolic logic, 2nd edition, Dover, New York, 1959.Google Scholar
[15]Łukasiewicz, Jan, A system of modal logic, The journal of computing systems, vol. 1, no. 3 (1953), pp. 111149.Google Scholar
[16]Łukasiewicz, J. and Tarski, A., Untersuchungen über den Aussagenkalkül, Comptes rendus des séances de la Société des sciences et des lettres de Varsovie, Classe III, vol. 23 (1930), pp. 3050.Google Scholar
[17]McKinsey, J. C. C., Systems of modal logic which are not unreasonable in the sense of Halldén, this Journal, vol. 18 (1953), pp. 109113.Google Scholar
[18]McNaughton, Robert, A theorem about infinite-valued sentential logic, this Journal, vol. 16 (1951), pp. 113.Google Scholar
[19]Rogers, Hartley Jr., Theory of recursive functions and effective Calculability, McGraw-Hill, New York, 1967.Google Scholar
[20]Rose, Alan and Rosser, J. Barkley, Fragments of many-valued statement calculi, Transactions of the American Mathematical Society, vol. 87 (1958), pp. 153.CrossRefGoogle Scholar
[21]Rosser, J. B. and Turquette, A. R., Many-valued logics, North-Holland, Amsterdam, 1952.Google Scholar
[22]Smiley, Timothy, On Łukasiewicz's Ł-modal system, Notre Dame journal of formal logic, vol. 2 (1961), pp. 149153.CrossRefGoogle Scholar