Article contents
A continuous movement version of the Banach–Tarski paradox: A solution to de Groot's Problem
Published online by Cambridge University Press: 12 March 2014
Abstract
In 1924 Banach and Tarski demonstrated the existence of a paradoxical decomposition of the 3-ball B, i.e., a piecewise isometry from B onto two copies of B. This article answers a question of de Groot from 1958 by showing that there is a paradoxical decomposition of B in which the pieces move continuously while remaining disjoint to yield two copies of B. More generally, we show that if n > 2, any two bounded sets in Rn that are equidecomposable with proper isometries are continuously equidecomposable in this sense.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2005
References
REFERENCES
- 3
- Cited by