Published online by Cambridge University Press: 12 March 2014
Let A be an abelian group and B a pure injective pure extension of A. Then there is a homomorphic image C of B over A which is a pure injective hull of A; C can be constructed by using Zorn's lemma to find a suitable congruence on B. In a paper [4] which greatly generalises this and related facts about pure injectives, Walter Taylor asks (Problem 1.5) whether one can find a “construction” of C which is more concrete than the one mentioned above; he asks also whether the points of C can be explicitly described. In this note I return the answer No.