No CrossRef data available.
Published online by Cambridge University Press: 18 February 2022
We initiate an investigation of structures on the set of real numbers having the property that path components of definable sets are definable. All o-minimal structures on $(\mathbb {R},<)$ have the property, as do all expansions of $(\mathbb {R},+,\cdot ,\mathbb {N})$ . Our main analytic-geometric result is that any such expansion of $(\mathbb {R},<,+)$ by Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of $(\mathbb N,+,\cdot )$ . We also show that any given expansion of $(\mathbb {R}, <, +,\mathbb {N})$ by subsets of $\mathbb {N}^n$ (n allowed to vary) has the property if and only if it defines all arithmetic sets. Variations arise by considering connected components or quasicomponents instead of path components.