Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T10:31:11.394Z Has data issue: false hasContentIssue false

Complex tilings

Published online by Cambridge University Press:  12 March 2014

Bruno Durand
Affiliation:
Laboratoire D'Informatique Fondamentale De Marseille, 39, Rue Joliot-Curie, 13453 Marseille, France, E-mail: [email protected]
Leonid A. Levin
Affiliation:
Boston University, Computer Science Department, 111 Cummington St., Boston. MA 02215, USA, E-mail: [email protected]
Alexander Shen
Affiliation:
Laboratoire D'Informatique Fondamentale De Marseille, and, Institute of Problems of Information Transmission, Moscow., Russia, E-mail: [email protected], E-mail: [email protected]

Abstract

We study the minimal complexity of tilings of a plane with a given tile set. We note that every tile set admits either no tiling or some tiling with Kolmogorov complexity of its (n × n)-squares. We construct tile sets for which this bound is tight: all (n × n)-squares in all tilings have complexity Ω(n). This adds a quantitative angle to classical results on non-recursivity of tilings—that we also develop in terms of Turing degrees of unsolvability.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[]Allauzen, Cyril and Durand, Bruno, Appendix A: “Tiling problems”, In [Börger, , Grädel, , and Gurevich, , 1996], pp. 407420.Google Scholar
[1966]Berger, Robert, The undecidability of the domino problem, Memoirs of the American Mathematical Society, vol. 66, 1966.Google Scholar
[1996]Börger, Egon, Grädel, Erich, and Gurevich, Yuri (editors), The classical decision problem. Springer-Verlag, 1996.Google Scholar
[2000]Cervelle, Julien and Durand, Bruno, Tilings: Recursivity and regularity, STACS'00, Lecture Notes in Computer Science, vol. 1770, Springer Verlag, 2000.Google Scholar
[1999]Durand, Bruno, Tilings and quasiperiodicity, Theoretical Computer Science, vol. 221 (1999), pp. 6175.CrossRefGoogle Scholar
[2001]Durand, Bruno, Levin, Leonid, and Shen, Alexander, Complex tilings, STOC, 2001, Extended version: http://ww.arxiv.org/cs.CC/0107008, pp. 732739.CrossRefGoogle Scholar
[2004]Durand, Bruno, Levin, Leonid, and Shen, Alexander, Local rules and global order, or aperiodic tilings. Mathematical Intelligencer, vol. 27 (2004), no. 1, pp. 6468.CrossRefGoogle Scholar
[2001]Gacs, Peter, Reliable cellular automata with self-organization. Journal of Statistical Physics, vol. 103 (2001), no. 1/2, pp. 45267.CrossRefGoogle Scholar
[1991]Gurevich, Yuri, Average case completeness, Journal of Computer and System Sciences, vol. 42 (1991), pp. 346398.CrossRefGoogle Scholar
[1972]Gurevich, Yuri and Koriakov, Igor, A remark on Berger's paper on the domino problem, Siberian Journal of Mathematics, vol. 13 (1972), pp. 459463, in Russian.CrossRefGoogle Scholar
[1974]Hanf, William, Nonrecursive tilings of the plane. I, this Journal, vol. 39 (1974), no. 2, pp. 283285.Google Scholar
[1991]Ingersent, Kevin, Matching rules for quasicrystalline tilings, Quasicrystals. The state of the art, World Scientific, 1991, pp. 185212.CrossRefGoogle Scholar
[1986]Levin, Leonid, Average case complete problems, SIAM Journal on Computing, vol. 15 (1986), no. 1, pp. 285286.CrossRefGoogle Scholar
[2005]Levin, Leonid, Aperiodic tilings: Breaking translational symmetry, The Computer Journal, vol. 48 (2005), no. 6, pp. 642645, on-line: http://www.arxiv.org/cs.DM/0409024.CrossRefGoogle Scholar
[1997]Li, Ming and Vitányi, Paul, An introduction to Kolmogorov complexity and its applications, second ed., Springer-Verlag, 1997.CrossRefGoogle Scholar
[2000]Muchnik, Andrej, personal communication, 2000.Google Scholar
[1974]Myers, Dale, Nonrecursive tilings of the plane, ii, this Journal, vol. 39 (1974), no. 2, pp. 286294.Google Scholar
[1989]Odifreddi, Piergiorgio, Classical recursion theory, North-Holland, 1989.Google Scholar
[1971]Robinson, Raphael, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae, vol. 12 (1971), pp. 177209.CrossRefGoogle Scholar
[1961]Wang, Hao, Proving theorems by pattern recognition II, Bell System Technical Journal, vol. 40 (1961), pp. 141.CrossRefGoogle Scholar
[1962]Wang, Hao. Dominoes and the ∀∃∀-case of the decision problem, Proceedings of the Symposium on Mathematical Theory of Automata, Brooklyn Polytechnic Institute, New York, 1962, pp. 2355.Google Scholar