No CrossRef data available.
Article contents
The combinatorics of combinatorial coding by a real
Published online by Cambridge University Press: 12 March 2014
Abstract
We lay the combinatorial foundations for [5] by setting up and proving the essential properties of the coding apparatus for singular cardinals. We also prove another result concerning the coding apparatus for inaccessible cardinals.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1995
References
REFERENCES
[1]Beller, A., Jensen, R., and Welch, P., Coding the universe, London Mathematical Society Lecture Notes Series, vol. 47, Cambridge University Press, Cambridge, 1982.CrossRefGoogle Scholar
[2]Donder, H.-D., Jensen, R., and Stanley, L., Condensation-coherent global square systems, Recursion theory, Proceedings of Symposia in Pure Mathematics, vol. 42, (Nerode, A. and Shore, R., editors), American Mathematical Society, Providence, Rhode Island, 1985, pp. 237–259.CrossRefGoogle Scholar
[3]Jensen, R., The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308.CrossRefGoogle Scholar
[4]Shelah, S. and Stanley, L., Coding and reshaping when there are no sharps, Set theory of the continuum, Mathematical Sciences Research Institute Publications, vol. 26, (Judah, H.et al., editors), Springer-Verlag, Berlin, 1992, pp. 407–416.CrossRefGoogle Scholar
[5]Shelah, S. and Stanley, L., A combinatorial forcing for coding the universe by a real when there are no sharps, this Journal, vol. 60 (1994), pp. 1–35.Google Scholar