Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T06:02:08.932Z Has data issue: false hasContentIssue false

Borel reductions and cub games in generalised descriptive set theory

Published online by Cambridge University Press:  12 March 2014

Vadim Kulikov*
Affiliation:
Department of Mathematics and Statistics, Gustav Hällströmin Katu 2B, 00014, University Of Helsinki, Finland
*
Kurt Gödel Research Center for Mathematical Logic, Währinger Straße 25, 1090 Vienna, Austria, E-mail:[email protected]

Abstract

It is shown that the power set of κ ordered by the subset relation modulo various versions of the non-stationary ideal can be embedded into the partial order of Borel equivalence relations on 2κ under Borel reducibility. Here κ is an uncountable regular cardinal with κ<κ = κ.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adams, S. and Kechris, A. S., Linear algebraic groups and countable Borel equivalence relations. Journal of the American Mathematical Society, vol. 13 (1999), pp. 909943.CrossRefGoogle Scholar
[2]Burke, M. and Magidor, M., Shelah's pcf theory and its applications. Annals of Pure and Applied Logic, vol. 50 (1990), pp. 207254.CrossRefGoogle Scholar
[3]Foreman, Matthew and Kanamori, Akihiro (editors), Handbook of set theory, Springer, 2010.CrossRefGoogle Scholar
[4]Friedman, S. D. and Hyttinen, T., On Borel equivalence relations in the generalized Baire space, Archive for Mathematical Logic, vol. 51 (2012), pp. 299304.CrossRefGoogle Scholar
[5]Friedman, S. D., Hyttinen, T., and Kulikov, V., Generalized descriptive set theory and classification theory, Memoirs of the American Mathematical Society, (2013), accepted for publication.Google Scholar
[6]Halko, A., Negligible subsets of the generalized Baire space , Academiae Scientiarum Fennicae. Annales. Mathematica. Dissertationes, vol. 108, 1996.CrossRefGoogle Scholar
[7]Huuskonen, T., Hyttinen, T., and Rautila, M., On the κ-cub game on λ and I[λ[, Archive for Mathematical Logic, vol. 38 (1999), pp. 549557.CrossRefGoogle Scholar
[8]Hyttinen, T., Games and infinitary languages, Academiae Scientiarum Fennicae. Annales. Mathematica. Dissertationes, vol. 64, 1987.Google Scholar
[9]Hyttinen, T., Shelah, S., and Tuuri, H., Remarks on strong nonstructure theorems, Notre Dame Journal of Formal Logic, vol. 34 (1993), no. 2, pp. 157168.CrossRefGoogle Scholar
[10]Jech, T., Set theory, Springer-Verlag, Berlin Heidelberg New York, 2003.Google Scholar
[11]Louveau, A. and Velickovic, B., A note on borel equivalence relations, Proceedings of the American Mathematical Society, vol. 120 (1994), no. 1, pp. 255259.CrossRefGoogle Scholar
[12]Mekler, A. and Väänänen, J., Trees and -subsets of , this Journal, vol. 58 (1993), no. 3, pp. 10521070.Google Scholar
[13]Mitchell, W., Aronszajn trees and the independence of the transfer property, Annals of Mathematical Logic, vol. 5 (1973), pp. 2146.CrossRefGoogle Scholar
[14]Mitchell, W., On the Hamkins approximation property, Annals of Pure and Applied Logic, vol. 144 (2006), pp. 126129.CrossRefGoogle Scholar
[15]Shelah, S., Reflecting stationary sets and successors of singular cardinals, Archive for Mathematical Logic, vol. 31 (1991), pp. 2553.CrossRefGoogle Scholar
[16]Shelah, S., Diamonds, Proceedings of the American Mathematical Society, vol. 138 (2010), pp. 21512161.CrossRefGoogle Scholar
[17]Tuomi, L., On the κ-cub game, Master's thesis, University of Helsinki, 2009.Google Scholar