Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T14:56:11.249Z Has data issue: false hasContentIssue false

Boolean universes above Boolean models

Published online by Cambridge University Press:  12 March 2014

Friedrich Wehrung*
Affiliation:
Université de Caen, Departement de Mathématiques, 14032 Caen Cedex, France, E-mail: [email protected]

Abstract

We establish several first- or second-order properties of models of first-order theories by considering their elements as atoms of a new universe of set theory and by extending naturally any structure of Boolean model on the atoms to the whole universe. For example, complete f-rings are “boundedly algebraically compact” in the language (+, −, ·, ∧, ∨, ≤), and the positive cone of a complete l-group with infinity adjoined is algebraically compact in the language (+, ∨, ≤). We also give an example with any first-order language. The proofs can be translated into “naive set theory” in a uniform way.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barwise, J., Admissible sets and structures, Springer-Verlag, Berlin and New York, 1975.CrossRefGoogle Scholar
[2]Bernau, S. J., Lateral and Dedekind-complelion of Archimedean lattice groups, Journal of the London Mathematical Society, vol. 12 (1976), part 3, pp. 320322.CrossRefGoogle Scholar
[3]Bioard, A., Keimel, K., and Wolfenstein, S., Groupes et anneaux réticulés. Lecture Notes in Mathematics, vol. 608, Springer-Verlag, Berlin and New York, 1977.Google Scholar
[4]Birkhoff, G., Lattice theory, American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, Providence, Rhode Island 1967.Google Scholar
[5]Chang, C. C. and Keisler, H. J., Model theory, North-Holland, Amsterdam, 1973.Google Scholar
[6]Fuchs, L., Infinite ahelian groups, vols. 1 and 2, Academic Press, San Diego, California, 1970 and 1973.Google Scholar
[7]Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., and Scott, D. S., A compendium of continuous lattices, Springer-Verlag, Berlin and New York, 1980.CrossRefGoogle Scholar
[8]Jakubík, J., On σ-complete lattice-ordered groups, Czechoslovak Mathematical Journal, vol. 23 (1973), no. 98, pp. 164174.CrossRefGoogle Scholar
[9]Jakubík, J., Conditionally orthogonally complete l-groups. Mathematische Nachrichten, vol. 65 (1975), pp. 153162.CrossRefGoogle Scholar
[10]Jech, T., The axiom of choice, North-Holland, Amsterdam, 1973.Google Scholar
[11]Jech, T., Set Theory, Academic Press, San Diego, California, 1978.Google Scholar
[12]Jech, T., Boolean-valued models, Handbook of Boolean algebras, vol. 3 (Monk, J. D., editor), North-Holland, Amsterdam, 1989, pp. 11971211.Google Scholar
[13]Jech, T., Boolean-linear spaces, Advances in Mathematics, vol. 81 (1990), pp. 117197.CrossRefGoogle Scholar
[14]Kelley, J. L., General Topology, revised edition, Van Nostrand, Princeton, New Jersey, 1968.Google Scholar
[15]Shortt, R. M. and Wehrung, F., Common extensions of semigroup-valued charges, preprint.Google Scholar
[16]Weglorz, B., Equationally compact algebras (I), Fundamenta Mathematieae, vol. 59 (1966), pp. 289298.CrossRefGoogle Scholar
[17]Wehrung, F., Injective positively ordered monoids I, Journal of Pure and Applied Algebra, vol. 83 (1992), pp. 4382.CrossRefGoogle Scholar
[18]Wehrung, F., Restricted injectivity, transfer property, and decompositions of separative positively ordered monoids, Communications in Algebra (to appear).Google Scholar