Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T13:27:22.806Z Has data issue: false hasContentIssue false

The axiom of determinacy implies dependent choices in L(R)

Published online by Cambridge University Press:  12 March 2014

Alexander S. Kechris*
Affiliation:
California Institute of Technology, Pasadena, California 91125

Abstract

We prove the following Main Theorem: ZF + AD + VL(R) ⇒ DC. As a corollary we have that Con(ZF + AD) ⇒ Con(ZF + AD + DC). Combined with the result of Woodin that Con(ZF + AD) ⇒ Con(ZF + AD + ¬ ACω) it follows that DC (as well as ACω) is independent relative to ZF + AD. It is finally shown (jointly with H. Woodin) that ZF + AD + ¬DCR, where DCR is DC restricted to reals, implies the consistency of ZF + AD + DC, in fact implies R# (i.e. the sharp of L(R)) exists.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[J]Jech, T., Set theory, Academic Press, New York, 1980.Google Scholar
[K]Kechris, A. S., AD and projective ordinals, Cabal Seminar 76–77 (Kechris, A. S. and Moschovakis, Y. N., editors), Lecture Notes in Mathematics, vol. 689, Springer-Verlag, Berlin, 1978, pp. 91132.CrossRefGoogle Scholar
[KMM]Kechris, A. S., Martin, D. A. and Moschovakis, Y. N. (editors), Cabal Seminar 79–81, Lecture Notes in Mathematics, Vol. 1019, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar
[KW]Kechris, A. S. and Woodin, W. H., The structure of Θ in L(R) (to appear).Google Scholar
[Ma]Martin, D. A., The axiom of determinateness and reduction principles in the analytical hierarchy, Bulletin of the American Mathematical Society, vol. 74 (1968), pp. 687689.CrossRefGoogle Scholar
[MMS]Martin, A. D., Moschovakis, Y. N. and Steel, J. R., The extent of definable scales, Bulletin (New Series) of the American Mathematical Society, vol. 6 (1982), pp. 435440.CrossRefGoogle Scholar
[Mo1]Moschovakis, Y. N., Scales on coinductive sets, [KMM], pp. 8191.Google Scholar
[Mo2]Moschovakis, Y. N., Descriptive set theory, North-Holland, Amsterdam, 1980.Google Scholar
[Mo3]Moschovakis, Y. N., Determinacy and prewellorderings of the continuum, Mathematical logic and foundations of set theory (Bar-Hillel, Y., editor), North-Holland, Amsterdam, 1970, pp. 2462.Google Scholar
[My]Mycielski, J., On the axiom of determinateness. I, II, Fundamental Mathematicae, vol. 53 (1963/1964), pp. 205224, and vol. 59 (1966), pp. 203–212.CrossRefGoogle Scholar
[Sh]Shoenfield, J. R., Mathematical logic, Addison-Wesley, Reading, Massachusetts, 1967.Google Scholar
[So]Solovay, R. M., The independence of DC from AD, Cabal Seminar 76–77 (Kechris, A. S. and Moschovakis, Y. N., editors), Lecture Notes in Mathematics, vol. 689, Springer-Verlag, Berlin, 1978, pp. 171184.CrossRefGoogle Scholar
[St]Steel, J. R., Scales in L(R), [KMM], pp. 113163.Google Scholar
[St-VW]Steel, J. R. and Wesep, R. Van, TWO consequences of determinacy consistent with choice, Transactions of the American Mathematical Society, vol. 272 (1982), pp. 6787.CrossRefGoogle Scholar