Article contents
An infinite superstable group has infinitely many conjugacy classes
Published online by Cambridge University Press: 12 March 2014
Extract
We begin with some notes concerning the genesis of this paper. A preliminary version of it was written by the third author, who was moved by the desire to correct a mistake in Poizat [1987, p. 97], and to refresh some other minor results of the same book, concerning equations which are satisfied generically in a stable group. The book in question will be considered here as our basic reference on stable groups, and these other results will be discussed elsewhere.
This preliminary version contained §§1, 2 and 3 of the present paper, restricted to the context of groups of finite Morley rank. It was observed that a counterexample of finite rank to the above theorem would be an extreme refutation of a conjecture by Zil'ber and Cherlin (cyrillic alphabet order), that may be not so solid as was believed some time ago, which states that a simple group of finite rank should be an algebraic group. Additional motivation for the problem was seen in Reineke's theorem (Reineke [1975]), stating that a connected group of rank one is abelian—the cornerstone for the study of superstable groups—whose proof rests on the fact that a group with two conjugacy classes either has only two elements, or has infinite chains of centralizers (a property that violates stability).
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1991
References
REFERENCES
- 1
- Cited by