Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T11:20:31.340Z Has data issue: false hasContentIssue false

The algebraic sum of sets of real numbers with strong measure zero sets

Published online by Cambridge University Press:  12 March 2014

Andrej Nowik
Affiliation:
Ul. Kolobrzeska23/F8, Gdansk-Oliwa 80390, Poland, E-mail: [email protected]
Marion Scheepers
Affiliation:
Department of Mathematics and Computer Science, Boise State University, Boise, Idaho 83725, USA, E-mail: [email protected]
Tomasz Weiss*
Affiliation:
Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
*
Institute of Mathematics, WSRP 08-110 Siedlce, Poland, E-mail: [email protected]

Abstract

We prove the following theorems:

(1) If X has strong measure zero and if Y has strong first category, then their algebraic sum has property S0.

(2) If X has Hurewicz's covering property, then it has strong measure zero if, and only if, its algebraic sum with any first category set is a first category set.

(3) If X has strong measure zero and Hurewicz's covering property then its algebraic sum with any set in is a set in . ( is included in the class of sets always of first category, and includes the class of strong first category sets.)

These results extend: Fremlin and Miller's theorem that strong measure zero sets having Hurewicz's property have Rothberger's property, Galvin and Miller's theorem that the algebraic sum of a set with the γ-property and of a first category set is a first category set, and Bartoszyfński and Judah's characterization of -sets. They also characterize the property (*) introduced by Gerlits and Nagy in terms of older concepts.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bartoszyński, T. and Judah, H., Borel images of sets of reals, Real Analysis Exchange, vol. 20 (19941995), no. 2, pp. 536558.CrossRefGoogle Scholar
[2]Bartoszyński, T. and Scheepers, M., A-sets, Real Analysis Exchange, vol. 19 (19931994), no. 2, pp. 521528.CrossRefGoogle Scholar
[3]Borel, E., Sur la classification des ensembles de mesure nulle, Bulletin de la Societe Mathematique de France, vol. 47 (1919), pp. 97125.CrossRefGoogle Scholar
[4]Corazza, P., The generalized Borel conjecture and strongly proper orders, Transactions of the American Mathematical Society, vol. 316 (1989), pp. 115140.CrossRefGoogle Scholar
[5]Erdös, P., Kunen, K., and Mauldin, R. D., Some additive properties of sets of real numbers, Fundamenta Mathematicae, vol. 113 (1981), pp. 187199.CrossRefGoogle Scholar
[6]Fremlin, D. H. and Miller, A. W., On some properties of Hurewicz, Menger, and Rothberger, Fundamenta Mathematicae, vol. 129 (1988), pp. 1733.Google Scholar
[7]Galvin, F. and Miller, A. W., γ-sets and other singular sets of real numbers, Topology and its Applications, vol. 17 (1984), pp. 145155.CrossRefGoogle Scholar
[8]Galvin, F., Mycielski, J., and Solovay, R., Abstract a-280, Notices of the American Mathematical Society, vol. 26 (1979).Google Scholar
[9]Gerlits, J. and Nagy, Zs., Some properties of C(X), I, Topology and its Applications, vol. 14 (1982), pp. 151161.CrossRefGoogle Scholar
[10]Hurewicz, W., Über Folgen stetiger Funktionen, Fundamenta Mathematicae, vol. 9 (1927), pp. 193204.CrossRefGoogle Scholar
[11]Laver, R., On the consistency of Borel's conjecture, Acta Mathematicae, vol. 137 (1976), pp. 151169.CrossRefGoogle Scholar
[12]Lorentz, G. G., On a problem of additive number theory, Proceedings of the American Mathematical Society, vol. 5 (1954), pp. 838841.CrossRefGoogle Scholar
[13]Lusin, N., Sur I'existence d'un ensemble dénombrable qui est de première catégorie dans tout ensemble parfait, Fundamenta Mathematicae, vol. 2 (1921), pp. 155157.CrossRefGoogle Scholar
[14]Lusin, N., Sur les ensembles toujours de première catégorie, Fundamenta Mathematicae, vol. 21 (1933), pp. 114126.CrossRefGoogle Scholar
[15]Miller, A. W., Some properties of measure and category, Transactions of the American Mathematical Society, vol. 266 (1981), pp. 93114.CrossRefGoogle Scholar
[16]Miller, A. W., Special subsets of the real line, Handbook of set theoretic topology (Kunen, K. and Vaughan, J. E., editors), Elsevier Science Publishers, 1984.Google Scholar
[17]Recław, I., Some additive properties of special sets of reals, Colloquium Mathematicum, vol. 62 (1991), pp. 221226.CrossRefGoogle Scholar
[18]Rothberger, F., Eine Verschärfung der Eigenschaft C, Fundamenta Mathematicae, vol. 30 (1938), pp. 5055.CrossRefGoogle Scholar
[19]Scheepers, M., Additive properties of sets of real numbers and an infinite game, Quaestiones Mathematicae, vol. 16 (1993), pp. 177191.CrossRefGoogle Scholar
[20]Scheepers, M., Meager sets and infinite games, Contemporary Mathematics, vol. 192 (1996), pp. 7790.CrossRefGoogle Scholar
[21]Sierpinski, W., Sur un ensemble non dénombrable, done toute image continue est de mesure nulle, Fundamenta Mathematicae, vol. 11 (1928), pp. 301304.CrossRefGoogle Scholar
[22]Szpilrajn, E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fundamenta Mathematicae, vol. 24 (1934), pp. 1734.CrossRefGoogle Scholar