Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T14:39:41.626Z Has data issue: false hasContentIssue false

ALGEBRAIC NEW FOUNDATIONS

Published online by Cambridge University Press:  05 February 2019

PAUL K. GORBOW*
Affiliation:
DEPARTMENT OF PHILOSOPHY, LINGUISTICS, AND THEORY OF SCIENCE UNIVERSITY OF GOTHENBURG BOX 200, 405 30GÖTEBORG, SWEDENE-mail: [email protected]

Abstract

This paper consists in the formulation of a novel categorical set theory, MLCat, which is proved to be equiconsistent to New Foundations (NF), and which can be modulated to correspond to intuitionistic (denoted with an “I” on the left) or classical NF, with atoms (denoted with a “U” on the right) or not:

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Awodey, S., Butz, C., Simpson, A., and Streicher, T., Relating first-order set theories, toposes and categories of classes. Annals of Pure and Applied Logic, vol. 165 (2014), pp. 428502.10.1016/j.apal.2013.06.004CrossRefGoogle Scholar
Cantini, A., On stratified truth, Unifying the Philosophy of Truth (Achourioti, T., Galinon, H., Martínez Fernández, J., and Fujimoto, K., editors), Springer, Berlin, 2015, pp. 369389.10.1007/978-94-017-9673-6_19CrossRefGoogle Scholar
Cocchiarella, N., Freges double-correlation thesis and quines set theories NF and ML. Journal of Philosophical Logic, vol. 14 (1985), no. 1, pp. 139.10.1007/BF00542647CrossRefGoogle Scholar
Crabbé, M., On the set of atoms. Logic Journal of the IGPL, vol. 8 (2000), no. 6. pp. 751759.10.1093/jigpal/8.6.751CrossRefGoogle Scholar
Dzierzgowski, D., Models of intuitionistic TT and NF, this Journal, vol. 60 (1995), pp. 640653.Google Scholar
Enayat, A., Automorphisms, mahlo cardinals, and NFU, Nonstandard Models of Arithmetic and Set Theory (Enayat, A. and Kossak, R., editors), Contemporary Mathematics, vol. 361, American Mathematical Society, Providence, RI, 2004, pp. 3759.10.1090/conm/361/06587CrossRefGoogle Scholar
Enayat, A., Gorbow, P., and McKenzie, Z., Feferman’s forays into the foundations of category theory, Feferman on Foundations: Logic, Mathematics, Philosophy (Jäger, G. and Sieg, W., editors), Outstanding Contributions to Logic Series, Springer Verlag, Cham, pp. 315346.10.1007/978-3-319-63334-3_12CrossRefGoogle Scholar
Feferman, S., Enriched Stratified Systems for the Foundations of Category Theory . In What is category theory? Polimetrica (2006). Preprint on-line: http://math.stanford.edu/∼feferman/papers/ess.pdf.Google Scholar
Forster, T., Set Theory with a Universal Set, second ed., Oxford University Press, Oxford, 1995.Google Scholar
Forster, T., Lewicki, A., and Vidrine, A., The category of sets in stratifiable set theories, unpublished, 2014.Google Scholar
Goldblatt, R., Topoi: The Categorical Analysis of Logic, Elsevier Science Publishers, Amsterdam, 2006.Google Scholar
Hailperin, T., A set of axioms for logic, this Journal, vol. 9 (1994), pp. 119.Google Scholar
Holmes, M. R., Elementary Set Theory with a Universal Set. Cahiers du Centre de logique, Vol. 10 (1998). Preprint of revised and corrected version on-line: http://math.boisestate.edu/~holmes/holmes/head.pdf.Google Scholar
Holmes, M. R., Repairing Frege’s Logic . Online: https://math.boisestate.edu/~holmes/holmes/fregenote.pdf (2015).Google Scholar
Jensen, R. B., On the consistency of a slight (?) modification of Quine’s NF. Synthese, vol. 19 (1969), pp. 250263.10.1007/BF00568059CrossRefGoogle Scholar
Johnstone, P. T., Sketches of an Elephant, Oxford University Press, Oxford, 2002.Google Scholar
Joyal, A. and Moerdijk, I., A categorical theory of cumulative hierarchies of sets. Comptes Rendus Mathématiques de l’Académie des Science, vol. 13 (1991), pp. 5558.Google Scholar
Joyal, A. and Moerdijk, I., Algebraic Set Theory, Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511752483CrossRefGoogle Scholar
Lawvere, F. W., Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences, vol. 50 (1963), no. 5. pp. 869872.10.1073/pnas.50.5.869CrossRefGoogle ScholarPubMed
McKenzie, Z., Automorphisms of models of set theory and extensions of NFU. Annals of Pure and Applied Logic, vol. 166 (2015), pp. 601638.10.1016/j.apal.2014.12.002CrossRefGoogle Scholar
McLarty, C., Failure of cartesian closedness in NF, this Journal, vol. 57 (1992), no. 2, pp. 555556.Google Scholar
Moschovakis, J., Intuitionistic logic, The Stanford Encyclopedia of Philosophy (Spring 2015 edition) (Zalta, E. N., editor). Online: https://plato.stanford.edu/archives/spr2015/entries/logic-intuitionistic.Google Scholar
Quine, W. V., New foundations for mathematical logic. American Mathematical Monthly, vol. 44 (1937), pp. 111115.10.1080/00029890.1937.11987928CrossRefGoogle Scholar
Quine, W. V., Mathematical logic, revised edition, Harvard University Press, Cambridge, MA, 1982.Google Scholar
Specker, E. P., The axiom of choice in Quine’s ‘New Foundations for Mathematical Logic’. Proceedings of the National Academy of Sciences of the U. S. A., vol. 39 (1953), pp. 972975.10.1073/pnas.39.9.972CrossRefGoogle Scholar
Solovay, R., The consistency strength of NFUB, 1997, arXiv:math/9707207 [math.LO].Google Scholar
Thomas, M., Approximating cartesian closed categories in NF-Style set theories. Journal of Philosophical Logic, vol. 47 (2017), no. 1, pp. 143160.10.1007/s10992-017-9425-2CrossRefGoogle Scholar
Wang, H., A formal system of logic, this Journal, vol. 15 (1950), no. 1, pp. 2532.Google Scholar