Article contents
A WEAKLY 2-GENERIC WHICH BOUNDS A MINIMAL DEGREE
Published online by Cambridge University Press: 04 November 2019
Abstract
Jockusch showed that 2-generic degrees are downward dense below a 2-generic degree. That is, if a is 2-generic, and $0 < {\bf{b}} < {\bf{a}}$, then there is a 2-generic g with $0 < {\bf{g}} < {\bf{b}}.$ In the case of 1-generic degrees Kumabe, and independently Chong and Downey, constructed a minimal degree computable from a 1-generic degree. We explore the tightness of these results.
We solve a question of Barmpalias and Lewis-Pye by constructing a minimal degree computable from a weakly 2-generic one. While there have been full approximation constructions of ${\rm{\Delta }}_3^0$ minimal degrees before, our proof is rather novel since it is a computable full approximation construction where both the generic and the minimal degrees are ${\rm{\Delta }}_3^0 - {\rm{\Delta }}_2^0$.
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2019
References
REFERENCES
- 1
- Cited by