Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T18:04:14.209Z Has data issue: false hasContentIssue false

Stepping up lemmas in definable partitions

Published online by Cambridge University Press:  12 March 2014

Evangelos Kranakis*
Affiliation:
Mathematisches Institut der Universität Heidelberg, Heidelberg, West Germany

Abstract

Several stepping up lemmas are proved which are then used to investigate the connection between definable partition relations and admissible ordinals.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Devlin, K. J., An introduction to the fine structure of the constructible hierarchy (results of Ronald, ensen), Generalized recursion theory (Proceedings of a Symposium, Oslo, 1972) (Fenstad, J. E. and Hinman, P. G., editors), North-Holland, Amsterdam, 1974, pp. 123163.CrossRefGoogle Scholar
[2]Drake, F. R., Set theory: An introduction to large cardinals, North-Holland, Amsterdam, 1974.Google Scholar
[3]Kaufmann, M. and Kranakis, E., Definable ultrapowers and ultrafilters over admissible ordinals, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik (to appear).Google Scholar
[4]Kranakis, E., Partition and reflection properties of admissible ordinals, Annals of Mathematical Logic, vol. 22 (1982), pp. 213242.CrossRefGoogle Scholar
[5]Kranakis, E., Definable ultrafilters and end extensions of constructible sets, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 28 (1982), pp. 395412.CrossRefGoogle Scholar
[6]Kranakis, E., Definable partitions for regular cardinals (in preparation).Google Scholar
[7]Kranakis, E. and Phillips, I., Partitions and homogeneous sets for admissible ordinals (to appear).Google Scholar