Article contents
A second order version of S 2 i and U 2 1
Published online by Cambridge University Press: 12 March 2014
Extract
In [1] S. Buss introduced systems of bounded arithmetic , , , (i = 1, 2, 3, …). and are first order systems and and are second order systems. and are closely related to and respectively in the polynomial hierarchy, and and are closely related to PSPACE and EXPTIME respectively. One of the most important problems in bounded arithmetic is whether the hierarchy of bounded arithmetic collapses, i.e. whether = or = for some i, or whether = , or whether is a conservative extension of S 2 = ⋃i . These problems are relevant to the problems whether the polynomial hierarchy PH collapses or whether PSPACE = PH or whether PSPACE = EXPTIME. It was shown in [4] that = implies and consequently the collapse of the polynomial hierarchy. We believe that the separation problems of bounded arithmetic and the separation problems of computational complexities are essentially the same problem, and the solution of one of them will lead to the solution of the other.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1991
References
REFERENCES
- 2
- Cited by