Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T07:29:37.790Z Has data issue: false hasContentIssue false

RECONSTRUCTION OF NON-$\aleph _0$-CATEGORICAL THEORIES

Published online by Cambridge University Press:  13 September 2021

ITAÏ BEN YAACOV*
Affiliation:
INSTITUT CAMILLE JORDAN, CNRS UMR 5208 UNIVERSITÉ CLAUDE BERNARD—LYON 1 43 BOULEVARD DU 11 NOVEMBRE 1918 VILLEURBANNE CEDEX 69622, FRANCEURL:http://math.univ-lyon1.fr/~begnac/

Abstract

We generalise the correspondence between $\aleph _0$ -categorical theories and their automorphism groups to arbitrary complete theories in classical logic, and to some theories (including, in particular, all $\aleph _0$ -categorical ones) in continuous logic.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbrandt, G. and Ziegler, M., Quasi-finitely axiomatizable totally categorical theories . Annals of Pure and Applied Logic, vol. 30 (1986), no. 1, pp. 6382, Stability in model theory (Trento, 1984).10.1016/0168-0072(86)90037-0CrossRefGoogle Scholar
Awodey, S. and Forssell, H., First-order logical duality . Annals of Pure and Applied Logic, vol. 164 (2013), no. 3, pp. 319348.10.1016/j.apal.2012.10.016CrossRefGoogle Scholar
Ben Yaacov, I., Continuous and random Vapnik–Chervonenkis classes . Israel Journal of Mathematics, vol. 173 (2009), pp. 309333.10.1007/s11856-009-0094-xCrossRefGoogle Scholar
Ben Yaacov, I., On theories of random variables . Israel Journal of Mathematics, vol. 194 (2013), no. 2, pp. 9571012.CrossRefGoogle Scholar
Ben Yaacov, I., Ibarlucía, T., and Tsankov, T., Eberlein oligomorphic groups . Transactions of the American Mathematical Society, vol. 370 (2018), no. 3, pp. 21812209.10.1090/tran/7227CrossRefGoogle Scholar
Ben Yaacov, I. and Kaïchouh, A., Reconstruction of separably categorical metric structures, this Journal, vol. 81 (2016), no. 1, pp. 216–224.Google Scholar
Ben Yaacov, I. and Keisler, H. J., Randomizations of models as metric structures . Confluentes Mathematici, vol. 1 (2009), no. 2, pp. 197223.10.1142/S1793744209000080CrossRefGoogle Scholar
Ben Yaacov, I. and Tsankov, T., Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups . Transactions of the American Mathematical Society, vol. 368 (2016), no. 11, pp. 82678294.CrossRefGoogle Scholar
Ben Yaacov, I. and Usvyatsov, A., On d-finiteness in continuous structures . Fundamenta Mathematicae, vol. 194 (2007), pp. 6788.CrossRefGoogle Scholar
Ibarlucía, T., The dynamical hierarchy for Roelcke precompact polish groups . Israel Journal of Mathematics, vol. 215 (2016), no. 2, pp. 9651009.10.1007/s11856-016-1399-1CrossRefGoogle Scholar
Ibarlucía, T., Automorphism groups of randomized structures, this Journal, vol. 82 (2017), no. 3, pp. 1150–1179.Google Scholar
Lascar, D., Automorphism groups of saturated structures; a review , Proceedings of the International Congress of Mathematicians (Beijing, 2002) vol. II (T. Li, editor), Higher Education Press, Beijing, 2002, pp. 2533.Google Scholar
Mackenzie, K., Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, 1987.10.1017/CBO9780511661839CrossRefGoogle Scholar