Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T17:02:56.230Z Has data issue: false hasContentIssue false

Random models and the Gödel case of the decision problem

Published online by Cambridge University Press:  12 March 2014

Yuri Gurevich
Affiliation:
University of Michigan, Ann Arbor, Michigan 48109
Saharon Shelah
Affiliation:
Hebrew University, Jerusalem, Israel

Abstract

In a paper of 1933 Gödel proved that every satisfiable first-order ∀2∃* sentence has a finite model. Actually he constructed a finite model in an ingenious and sophisticated way. In this paper we use a simple and straightforward probabilistic argument to establish existence of a finite model of an arbitrary satisfiable ∀2∃* sentence.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Dreben, Burton S. and Goldfarb, Warren D., The decision problem: Solvable classes of quantificational formulas, Addison-Wesley, Reading, Mass., 1979.Google Scholar
[2]Fagin, Ronald, Probabilities on finite models, this Journal, vol. 41 (1976), pp. 5057.Google Scholar
[3]Gödel, Kurt, Zum Entscheidungsproblem des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik, vol. 40 (1933), pp. 433443.CrossRefGoogle Scholar
[4]Goldfarb, Warren D., On the Gödel class with identity, this Journal, vol. 46 (1981), pp. 354364.Google Scholar
[5]Goldfarb, Warren D., Gurevich, Yuri and Shelah, Saharon, On the Gödel class with identity (in preparation).Google Scholar
[6]Kalmar, Laszlo, Über die Erfüllbarkeit derjenigen Zahlausdrucke, welche in der Normalform zwei benachtbarte Allzeichen enthalten, Mathematische Annalen, vol. 108 (1933), pp. 466484.CrossRefGoogle Scholar
[7]Lewis, Harry R., Unsohable classes of quanlificational formulas, Addison-Wesley, Reading, Mass., 1979.Google Scholar
[8]Lewis, Harry R., Complexity results for classes of quantificational formulas, Journal of Computer and System Sciences, vol. 21 (1980), pp. 317353.CrossRefGoogle Scholar
[9]Schütte, Kurt, Untersuchungen zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen, vol. 109 (1934), pp. 572603.CrossRefGoogle Scholar
[10]Schütte, Kurt, Über die Erfüllbarkeit einer Klasse von logischen Formeln, Mathematische Annalen, vol. 110 (1934), pp. 161194.CrossRefGoogle Scholar