Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T18:22:48.847Z Has data issue: false hasContentIssue false

Proof theory in the USSR 1925–1969

Published online by Cambridge University Press:  12 March 2014

Grigori Mints*
Affiliation:
Institute of Cybernetics, Academy of Sciences of the Estonian SSR, Tallinn 200108, USSR

Abstract

We present a survey of proof theory in the USSR beginning with the paper by Kolmogorov [1925] and ending (mostly) in 1969; the last two sections deal with work done by A. A. Markov and N. A. Shanin in the early seventies, providing a kind of effective interpretation of negative arithmetic formulas. The material is arranged in chronological order and subdivided according to topics of investigation. The exposition is more detailed when the work is little known in the West or the original presentation can be improved using notions or results which appeared later. This includes such topics as Novikov's cut-elimination method (regular formulas) and Maslov's inverse method for the predicate logic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anufriev, F. V., Fedyurko, V. V., Letvichevskiǐ, A. A., Asel'derov, Z. M., and Didukh, Yu. Yu. [1966] On an algorithm for searching for proofs of theorems in group theory, Kibernetika, no. 1, pp. 2329; English translation in Cybernetics, vol. 2, no. 1, pp. 20–25.Google Scholar
Barwise, Jon [1977] Handbook of mathematical logic, North-Holland, Amsterdam.Google Scholar
Belyakin, N. V. [1967] On a complete system of classical arithmetic, Algebra i Logika, vol. 6, no. 2, pp. 511. (Russian)Google Scholar
Bochvar, D. A. [1944] On the question of paradoxes in mathematical logic and set theory, Matematicheskiĭ Sbornik, vol. 15 (57), pp. 353369. (Russian)Google Scholar
Bochvar, D. A. [1945] Some logical theorems on normal sets and predicates, Matematicheskiĭ Sbornik, vol. 16 (58), pp. 345352. (Russian)Google Scholar
Bochvar, D. A. [1960] Antinomies based on sets of definitions of predicates, each individually consistent, Matematicheskiĭ Sbornik, vol. 52 (94), pp. 641646. (Russian)Google Scholar
Chang, Chin-Liang and Lee, Richard Char-Tung [1973] Symbolic logic and mechanical theorem proving, Academic Press, New York.Google Scholar
Davydov, G. V. [1967] A method of establishing deducibility in the classical predicate calculus, in Slisenko, [1967], pp. 817 (Russian), 1–4 (English).Google Scholar
Davydov, G. V. [1971] Synthesis of the resolution method with the inverse method, in Matiyasevich, and Slisenko, [1971], pp. 2435 (Russian), 12–18 (English).Google Scholar
Davydov, G. V., Maslov, S. Yu., Mints, G. E., Orevkov, V. P., and Slisenko, A. O. [1969] A machine algorithm for establishing deducibility on the basis of the inverse method, in Slisenko, [1969], pp. 819 (Russian), 1–6 (English).Google Scholar
Dragalin, A. G. [1967] Justification of Markov's principle of constructive choice, Doklady Akademii Nauk SSSR, vol. 177, pp. 9971000; English translation, Soviet Mathematics Doklady, vol. 8, pp. 1526–1530.Google Scholar
Dragalin, A. G. [1968] The computability of primitive recursive terms of finite type, and primitive recursive realization, in Slisenko, [1968], pp. 3245 (Russian), 13–18 (English).Google Scholar
Dragalin, A. G. [1980] New farms of realizability and Markov's rule, Doklady Akademii Nauk SSSR, vol. 251, pp. 534537; English translation, Soviet Mathematics Doklady, vol. 21, pp. 461–464.Google Scholar
Falevich, B. Ya. [1958] A new method for proving incompleteness theorems for systems with Carnap's rule, and its application to the problem of the interrelation between classical and constructive analysis, Doklady Akademii Nauk SSSR, vol. 120, pp. 12101213. (Russian)Google Scholar
Glivenko, V. I. [1929] Sur quelques points de la logique de M. Brouwer, Académie Royale de Belgique, Bulletin de la Classe des Sciences, ser. 5, vol. 15, pp. 183188.Google Scholar
Gurevich, Ju. Sh. [1966] The decision problem for the restricted predicate calculus, Doklady Akademii Nauk SSSR, vol. 168, pp. 510511; English translation, Soviet Mathematics Doklady, vol. 7, pp. 669–670.Google Scholar
Idel'son, A. V. [1964] A calculus of constructive logic with subordinate variables, Trudy Matematicheskogo Institutaimeni V. A. Steklova, vol. 72, pp. 228343; English translation, American Mathematical Society Translations, ser. 2, vol. 99 (1972), pp. 83–227.Google Scholar
Kabakov, P. A. [1963] Deducibility of certain realizable formulae of the prepositional calculus, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 9, pp. 97104. (Russian)Google Scholar
Khlodovskiĭ, I. N. [1959] A new proof of the consistency of arithmetic, Uspekhi Matematicheskikh Nauk, vol. 14, no. 6(90), pp. 105140; English translation, American Mathematical Society Translations, ser. 2, vol. 23 (1963), pp. 191–230.Google Scholar
Kipnis, M. M. [1967] On a properly of prepositional formulas, Doklady Akademii Nauk SSSR, vol. 174, pp. 277278; English translation, Soviet Mathematics Doklady, vol. 8, pp. 620–621; vol. 10, no. 1, p. v.Google Scholar
Kipnis, M. M. [1968] Constructive classification of arithmetical predicates, and semantic bases of arithmetic, in Slisenko, [1968], pp. 5365 (Russian), 22–27 (English).Google Scholar
Kipnis, M. M. [1971] The realization of predicate formulas, in Matiyasevich, and Slisenko, [1971], pp. 4048 (Russian), 22–27 (English).Google Scholar
Kleene, S. C. [1945] On the interpretation of intuitionistic number theory, this Journal, vol. 10, pp. 109124.Google Scholar
Kleene, S. C. [1952] Introduction to metamathematics, Van Nostrand, Princeton, New Jersey; reprint, North-Holland, Amsterdam, 1971.Google Scholar
Kleene, S. C. [1960] Realizability and Shanin's algorithm for the constructive deciphering of mathematical sentences, Logique et Analyse, ser. 2, vol. 3, pp. 154165.Google Scholar
Kolmogorov, A. N. [1925] On the principle of tertium non datur, Matematicheskiĭ Sbornik, vol. 32, pp. 646667; English translation, On the law of the excluded middle, From Frege to Gödel. A source-book in mathematical logic, 1879–1931 (J. van Heijenoort, editor), Harvard University Press, Cambridge, Massachusetts, 1967, pp. 414–437.Google Scholar
Kolmogorov, A. N. [1932] Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35, pp. 5865.CrossRefGoogle Scholar
Kostyrko, V. F. [1965] On the decidability problem for Ackermann's case, Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 6, pp. 342363. (Russian)Google Scholar
Kushner, B. A. [1973] Lectures in constructive mathematical analysis, “Nauka”, Moscow; English translation, American Mathematical Society, Providence, Rhode Island, 1984.Google Scholar
Kuznetsov, A. V. [1957] Completeness of the system of axioms of arithmetic with the law of constructively infinite induction, Uspekhi Matematicheskikh Nauk, vol. 12, no. 4 (76), pp. 218219. (Russian)Google Scholar
Lifschitz, V. A. [1967] Deductive general validity and reduction classes, in Slisenko, [1967], pp. 6977 (Russian), 26–28 (English).Google Scholar
Lifschitz, V. A. [1968] Specialization of the form of deduction in the predicate calculus with equality and function symbols. I, in Orevkov, [1968a], pp. 525 (Russian), 1–23 (English).Google Scholar
Makanin, G. S. [1964] A new solvable case of the decision problem for the first-order predicate calculus, Formal logic and the methodology of science (Tavanets, P. V., editor), “Nauka”, Moscow, pp. 125153. (Russian)Google Scholar
Markov, A. A. [1950] Constructive logic, Uspekhi Matematicheskikh Nauk, vol. 5, no. 3 (37), pp. 187188. (Russian)Google Scholar
Markov, A. A. [1962] On constructive mathematics, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 67, pp. 814; English translation, American Mathematical Society Translations, ser. 2, vol. 98 (1971), pp. 1–10.Google Scholar
Markov, A. A. [1972] On the logic of constructive mathematics, “Znanie”, Moscow. (Russian)Google Scholar
Markov, A. A. and Nagornyĭ, N. M. [1984] The theory of algorithms, “Nauka”, Moscow; English translation, Kluwer, Dordrecht, 1988.Google Scholar
Maslov, S. Yu. [1964] The inverse method for establishing deducibility in the classical predicate calculus, Doklady Akademii Nauk SSSR, vol. 159, pp. 1720; English translations, (a) Soviet Mathematics Doklady, vol. 5, pp. 1420–1424; (b) Siekmann and Wrightson [1983], Vol. II, pp. 48–54.Google Scholar
Maslov, S. Yu. [1966] Application of the inverse method for establishing deducibility to the theory of decidable fragments in the classical predicate calculus, Doklady Akademii Nauk SSSR, vol. 171, pp. 12821285; English translation, Soviet Mathematics Doklady, vol. 7, pp. 1653–1657.Google Scholar
Maslov, S. Yu. [1967] An invertible sequential version of the constructive predicate calculus, in Slisenko, [1967], pp. 96111 (Russian), 36–42 (English).Google Scholar
Maslov, S. Yu. [1967a] The inverse method for establishing deducibility of nonprenex formulas of the predicate calculus, Doklady Akademii Nauk SSSR, vol. 172, pp. 2225; English translation, Soviet Mathematics Doklady, vol. 8, pp. 16–19.Google Scholar
Maslov, S. Yu. [1968] The inverse method of establishing deducibility for logical calculi, in Orevkov, [1968a], pp. 2687 (Russian), 25–96 (English).Google Scholar
Maslov, S. Yu. [1969] Deduction-search tactics based on a unification of the order of terms in a favorable set, in Slisenko, [1969], pp. 126136 (Russian), 64–68 (English).Google Scholar
Maslov, S. Yu. [1969a] The connection between tactics of the inverse method and the resolution method, in Slisenko, [1969], pp. 137146 (Russian), 69–73 (English); also Siekmann and Wrightson [1983], Vol. II, pp. 264–272.Google Scholar
Maslov, S. Yu. [1971] Extension of the inverse method to the predicate calculus with equality, in Matiyasevich, and Slisenko, [1971], pp. 8096 (Russian), 48–58 (English).Google Scholar
Maslov, S. Yu. and Mints, G. E. [1983] The theory of proof search and the inverse method, Appendix A to the Russian translation of Chang and Lee [1973], “Nauka”, Moscow, pp. 291314. (Russian)Google Scholar
Maslov, S. Yu., Mints, G. E., and Orevkov, V. P. [1965] Unsolvability in the constructive predicate calculus of certain classes of formulas containing only monadic predicate variables, Doklady Akademii Nauk SSSR, vol. 163, pp. 295297; English translation, Soviet Mathematics Doklady, vol. 6, pp. 918–920.Google Scholar
Maslov, S. Yu., Mints, G. E., and Orevkov, V. P. [1971] Mechanical proof-search and the theory of logical deduction in the USSR, Revue Internationale de Philosophie, vol. 98, pp. 575584; reprinted in Siekmann and Wrightson [1983], Vol. I, pp. 29–38.Google Scholar
Matiyasevich, Yu. V. and Slisenko, A. O. (editors) [1971] Studies in constructive mathematics and mathematical logic. IV, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 20; English translation, Journal of Soviet Mathematics, vol. 1 (1973), no. 1.Google Scholar
Matulis, V. A. [1962] Two variants of the classical predicate calculus without structural rules of deduction, Doklady Akademii Nauk SSSR, vol. 147, pp. 10291031; English translation, Soviet Mathematics Doklady, vol. 3, pp. 1770–1773; vol. 5, no. 5, p. v.Google Scholar
Mints, G. E. [1962] An analogue of Herbrand's theorem for the constructive predicate calculus, Doklady Akademii Nauk SSSR, vol. 147, pp. 783786; English translation, Soviet Mathematics Doklady, vol. 3, pp. 1712–1715.Google Scholar
Mints, G. E. [1966] Skolem's method of eliminating positive quantifiers in sequential calculi, Doklady Akademii Nauk SSSR, vol. 169, pp. 2427; English translation in Soviet Mathematics Doklady, vol. 7, pp. 861–864.Google Scholar
Mints, G. E. [1966a] Herbrand's theorem for the predicate calculus with equality and functional symbols, Doklady Akademii Nauk SSSR, vol. 169, pp. 273275; English translation, Soviet Mathematics Doklady, vol. 7, pp. 911–914.Google Scholar
Mints, G. E. [1967a] An analogue of Herbrand's theorem for nonprenex formulas of the constructive predicate calculus, in Slisenko, [1967], pp. 123133 (Russian), 47–51 (English).Google Scholar
Mints, G. E. [1967b] A variation of proof-search tactics in sequential calculi, in Slisenko, [1967], pp. 134151 (Russian), 52–59 (English).Google Scholar
Mints, G. E. [1967c] Imbedding operations connected with Kripke semantics, in Slisenko, [1967], pp. 152159 (Russian), 60–63 (English).Google Scholar
Mints, G. E. [1967d] Herbrand's theorem, The mathematical theory of logical deduction (Idel'son, A. V. and Mints, G. E., editors), “Nauka”, Moscow, pp. 311350. (Russian)Google Scholar
Mints, G. E. [1967e] Choice of terms in quantifier rules of the constructive predicate calculus, in Slisenko, [1967], pp. 112122 (Russian), 43–46 (English).Google Scholar
Mints, G. E. [1968a] On some calculi of modal logic, in Orevkov, [1968a], pp. 88111 (Russian), 97–124 (English).Google Scholar
Mints, G. E. [1968b] On the construction of conservative logical deductions, in Orevkov, [1968a], pp. 112120 (Russian), 125–134 (English).Google Scholar
Mints, G. E. [1968c] Solvability of the problem of deducibility in LJ for a class of formulas not containing negative occurrences of quantifiers, in Orevkov, [1968a], pp. 121130 (Russian), 135–145 (English).Google Scholar
Mints, G. E. [1968d] Cut-free calculi of type S5, in Slisenko, [1968], pp. 166174 (Russian), 79–82 (English).Google Scholar
Mints, G. E. [1968e] Implicative complexity of axiomatic systems, in Slisenko, [1968], pp. 175181 (Russian), 83–85 (English).Google Scholar
Mints, G. E. [1968f] A disjunctive interpretation of the calculus LJ, in Slisenko, [1968], pp. 182188 (Russian), 86–89 (English).Google Scholar
Mints, G. E. [1968g] Admissible and deductive rules, in Slisenko, [1968], pp. 189191 (Russian), 90–91 (English).Google Scholar
Mints, G. E. [1968h] Independence of the postulates of natural calculi, in Slisenko, [1968], pp. 192195 (Russian), 92–94 (English).Google Scholar
Mints, G. E. [1969] On the semantics of modal logic, in Slisenko, [1969], pp. 147151 (Russian), 74–76 (English).Google Scholar
Mints, G. E. [1975] Transfinite unfoldings of arithmetic formulas, Zapiski Nauchnykh Seminararov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademi Nauk SSSR (LOMI), vol. 49, pp. 5166; English translation, Journal of Soviet Mathematics, vol. 10 (1978), no. 4, pp. 533–547.Google Scholar
Mints, G. E. [1976] The universality of the canonical tree, Doklady Akademii Nauk SSSR, vol. 227, pp. 808811; English translation, Soviet Mathematics Doklady, vol. 17, pp. 527–532.Google Scholar
Mints, G. E. [1978] On Novikov 's conjecture, Modal and intensional logic, Institut Filosofii, Akademiya Nauk SSSR, Moscow, pp. 102106; English translation in Mints [1990].Google Scholar
Mints, G. E. [1983] The ramified semantics of A. A. Markov, Appendix to the Russian translation of Barwise [1977], Vol. 4, “Nauka”, Moscow, pp. 348357. (Russian)Google Scholar
Mints, G. E. [1983a] The majorant semantics of N. A. Shanin, Appendix to the Russian translation of Barwise [1977], Vol. 4, “Nauka”, Moscow, pp. 357366. (Russian)Google Scholar
Mints, G. E. [1990] Proof-theoretic transformations, Bibliopolis, Naples.Google Scholar
Mints, G. E. and Orevkov, V. P. [1967] On imbedding operators, in Slisenko, [1967], pp. 160167 (Russian), 64–66 (English).Google Scholar
Nelson, David [1947] Recursive functions and intuitionistic number theory, Transactions of the American Mathematical Society, vol. 61, pp. 307368.CrossRefGoogle Scholar
Novikov, P. S. [1939] Sur quelques théorèmes d'existence, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, vol. 23, pp. 438440.Google Scholar
Novikov, P. S. [1943] On the consistency of certain logical calculus, Matematicheskiĭ Sbornik, vol. 12 (54), pp. 231261. (English)Google Scholar
Novikov, P. S. [1947] On logical paradoxes, Doklady Akademii Nauk SSSR, vol. 56, pp. 451453. (Russian)Google Scholar
Novikov, P. S. [1949] On classes of regularity, Doklady Akademii Nauk SSSR, vol. 64, pp. 293295. (Russian)Google Scholar
Novikov, P. S. [1949a] On the axiom of complete induction, Doklady Akademii Nauk SSSR, vol. 64, pp. 457459. (Russian)Google Scholar
Novikov, P. S. [1959] Elements of mathematical logic, Fizmatgiz, Moscow; English translation, Oliver & Boyd, London, and Addison-Wesley, Reading, Massachusetts, 1964.Google Scholar
Novikov, P. S. [1961] Inconsistencies of certain logical calculi, Infimtistic methods (proceedings of the symposium on foundations of mathematics, Warsaw, 1959), PWN, Warsaw, and Pergamon Press, Oxford, 1961, pp. 7174. (Russian)Google Scholar
Novikov, P. S. [1977] Constructive mathematical logic from the classical point of view,“Nauka”, Moscow. (Russian)Google Scholar
Orevkov, V. P. [1965] Some reduction classes and solvable classes of sequents for the constructive predicate calculus, Doklady Akademii Nauk SSSR, vol. 163, pp. 3032; English translation, Soviet Mathematics Doklady, vol. 6, pp. 888–891.Google Scholar
Orevkov, V. P. [1965a] Unsolvability of classes of formulas of the type ¬¬ ∀∃ in the constructive predicate calculus, Doklady Akademii Nauk SSSR, vol. 163, pp. 581583; English translation, Soviet Mathematics Doklady, vol. 6, pp. 977–980.Google Scholar
Orevkov, V. P. [1965b] A solvable class of formulas of the predicate calculus with functional symbols, Second all-union symposium on cybernetics, abstracts of reports, Tbilisi, p. 176. (Russian)Google Scholar
Orevkov, V. P. [1967] Unsolvability in the modal predicate calculus of a class of formulas which contain only one one-place predicate variable, in Slisenko, [1967], pp. 168173 (Russian), 67–69 (English).Google Scholar
Orevkov, V. P. [1968] On Glivenko sequent classes, in Orevkov, [1968a], pp. 131154 (Russian), 147–173 (English).Google Scholar
Orevkov, V. P. [1968a] (editor), Logical and logico-mathematical calculi. I, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 98; English translation, The calculi of symbolic logic. I, Proceedings of the Steklov Institute of Mathematics, vol. 98 (1971).Google Scholar
Orevkov, V. P. [1969] Nonlengthening applications of the rules for equality, in Slisenko, [1969], pp. 152156 (Russian), 77–79 (English).Google Scholar
Pil'chak, B. Yu. [1950] On the decision problem for the calculus of problems, Doklady Akademii Nauk SSSR, vol. 75, pp. 773776. (Russian)Google Scholar
Pil'chak, B. Yu. [1952] On the calculus of problems, Ukrainskiĭ Matematicheskiĭ Zhurnal, vol. 4, pp. 174194. (Russian)Google Scholar
Plisko, V. E. [1978] Some variants of the notion of realizability for predicate formulas, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, vol. 42 (1978), pp. 636653; English translation in Mathematics of the USSR—Izvestiya, vol. 12 (1978), pp. 588–604.Google Scholar
Pliuškevičiené, A. [1969] Elimination of cut-type rules in axiomatic theories with equality, in Slisenko, [1969], pp. 175184 (Russian), 90–94 (English).Google Scholar
Pliuškevičiené, A. [1971] The specialization of the application of axioms in the search for deduction in axiomatic theories with equality, in Matiyasevich, and Slisenko, [1971], pp. 175184 (Russian), 110–116 (English).Google Scholar
Pliuškevičius, R. [1965] On a variant of the constructive predicate calculus without structural deduction rules, Doklady Akademii Nauk SSSR, vol. 161, pp. 292295; English translation, Soviet Mathematics Doklady, vol. 6, pp. 416–419.Google Scholar
Pliuškevičius, R. [1968] A sequential variant of constructive logic calculi for normal formulas not containing structural rules, in Orevkov, [1968a], pp. 155202 (Russian), 175–229 (English).Google Scholar
Rogava, M. G. [1967] On sequential variants of applied predicate calculi, in Slisenko, [1967], pp. 189200 (Russian), 77–81 (English).Google Scholar
Shanin, N. A. [1955] On some logical problems of arithmetic, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 43. (Russian)Google Scholar
Shanin, N. A. [1956] On the constructive meaning of mathematical judgments, Proceedings of the third all-union mathematical congress (Moscow, 1956). Vol. 1 : Sectional reports, Izdatel'stvo Akademii Nauk SSSR, Moscow, 1956, pp. 189190. (Russian)Google Scholar
Shanin, N. A. [1958] On the constructive interpretation of mathematical judgements, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 52, pp. 226311; English translation, American Mathematical Society Translations, ser. 2, vol. 23 (1963), pp. 109–189.Google Scholar
Shanin, N. A. [1961] On an heuristic method of searching for a logical deduction in the classical prepositional calculus, Proceedings of the fourth all-union mathematical congress (Leningrad, 1961). Vol. 2: Sectional reports, “Nauka”, Leningrad, 1964, p. 103. (Russian)Google Scholar
Shanin, N. A. [1973] On a hierarchy of methods for interpreting propositions in constructive mathematics, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 129, pp. 203266; English translation, Proceedings of the Steklov Institute of Mathematics, vol. 129, pp. 209–271.Google Scholar
Shanin, N. A., Davydov, G. B., Maslov, S. Yu., Mints, G. E., Orevkov, V. P., and Slisenko, A. O. [1965] An algorithm for a machine scan of a natural logical deduction in a prepositional calculus, “Nauka”, Moscow; English translation, Siekmann and Wrightson [1983], Vol. I, pp. 424–483.Google Scholar
Siekmann, Jörg and Wrightson, Graham (editors) [1983] Automation of reasoning. Vols. 1, 2, Springer-Verlag, Berlin.Google Scholar
Slisenko, A. O. (editor) [1967] Studies in constructive mathematics and mathematical logic. I, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 4; English translation, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, vol. 4, Plenum Press, New York, 1969.Google Scholar
Slisenko, A. O. (editor) [1968] Studies in constructive mathematics and mathematical logic. II, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 8; English translation, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, vol. 8, Plenum Press, New York, 1970.Google Scholar
Slisenko, A. O. (editor) [1969] Studies in constructive mathematics and mathematical logic. III, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 16; English translation, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, vol. 16, Plenum Press, New York, 1971.Google Scholar
Smetanich, Ya. S. [1960] On the completeness of the prepositional calculus with additional operations in one argument, Trudy Moskovskogo Matematicheskogo Obshchestva, vol. 9, pp. 357371. (Russian)Google Scholar
Smetanich, Ya. S. [1961] On prepositional calculi with an additional operation, Doklady Akademii Nauk SSSR, vol. 139, pp. 309312; English translation, Soviet Mathematics Doklady, vol. 2, pp. 937–939.Google Scholar
Sochilina, A. V. [1978] An algorithm and a program for establishing deducibility, resolving broad classes of formulas, Kibernetika, no. 3, pp. 136138; English translation, Cybernetics, vol. 14, pp. 460–463.Google Scholar
Styazhkin, N. I. [1964] The formation of the ideas of mathematical logic, “Nauka”, Moscow; English translation, History of mathematical logic from Leibniz to Peano, M.I.T. Press, Cambridge, Massachusetts, 1969.Google Scholar
Tauts, A. [1963] Solution of logical equations of propositional type, Eesti NSV Teaduste Akadeemia Füüsika ja Astronoomia Instituudi Uurimused, (= Trudy Instituta Fiziki i Astronomii Akademii Nauk Èstonskoĭ SSR), no. 20, pp. 313 (Russian)Google Scholar
Tauts, A. [1964] Solution of logical equations by an iteration method in the first-order predicate calculus, Eesti NSV Teaduste Akadeemia Füüsika ja Astronoomia Instituudi Uurimused (= Trudy Instituta Fiziki i Astronomii Akademii Nauk Èstonskoĭ SSR), no. 24, pp. 1724. (Russian)Google Scholar
Tauts, A. [1964a] Solution of logical equations in the first-order one-place-predicate calculus, Eesti NSV Teaduste Akadeemia Füüsika ja Astronoomia Instituudi Uurimused ( = Trudy Instituta Fiziki i Astronomii Akademii Nauk Èstonskoĭ SSR), no. 24, pp. 316. (Russian)Google Scholar
Tseǐtin, G. S. [1968] Complexity of a deduction in the propositional predicate calculus, in Slisenko, [1968], pp. 234259 (Russian), 115–125 (English).Google Scholar
Tseǐtin, G. S. [1968a] The disjunctive rank of formulas of constructive arithmetic, in Slisenko, [1968], pp. 260271 (Russian), 126–132 (English).Google Scholar
Tsinman, L. L. [1968] On the role of the induction principle in a formal arithmetic system, Matematicheskiĭ Sbornik, vol. 77 (119), pp. 71104; English translation, Mathematics of the USSR Sbornik, vol. 6, pp. 65–95.Google Scholar
Uspenskiĭ, V. A. [1953] Gödel's theorem and the theory of algorithms, Doklady Akademii Nauk SSSR, vol. 91, pp. 737740; English translation, American Mathematical Society Translations, ser. 2, vol. 23 (19631, pp. 103–107.Google Scholar
Varpakhovskiĭ, F. L. [1965] The nonrealizability of a disjunction of nonrealizable formulas of propositional logic, Doklady Akademii Nauk SSSR, vol. 161, pp. 12571258; English translation, Soviet Mathematics Doklady, vol. 6, pp. 568–570.Google Scholar
Varpakhovskiĭ, F. L. [1971] On a class of realizable formulas of propositional logic, in Matiyasevich, and Slisenko, [1971], pp. 823 (Russian), 1–11 (English).Google Scholar
Vorob'ev, N. N. [1952] A constructive propositional calculus with strong negation, Doklady Akademii Nauk SSSR, vol. 85, pp. 465468. (Russian).Google Scholar
Vorob'ev, N. N. [1952a] The decision problem in the constructive propositional calculus with strong negation, Doklady Akademii Nauk SSSR, vol. 85, pp. 689692. (Russian)Google Scholar
Vorob'ev, N. N. [1958] A new algorithm for derivability in a constructive propositional calculus, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 52, pp. 193225; English translation, American Mathematical Society Translations, ser. 2, vol. 94 (1970), pp. 37–71.Google Scholar
Yankov, V. A. [1963] On realizable formulas of propositional logic, Doklady Akademii Nauk SSSR, vol. 151, pp. 10351037; English translation, Soviet Mathematics Doklady, vol. 4, pp. 1146–1148.Google Scholar
Yanovskaya, S. A. [1948] The foundations of mathematics and mathematical logic, Mathematics in the USSR over the thirty years 1917–1947 (Kurosh, A. G.et al., editors), OGIZ, Moscow, 1948, pp. 1150. (Russian)Google Scholar
Yanovskaya, S. A. [1959] Mathematical logic and the foundations of mathematics, Mathematics in the USSR over the forty years 1917–1957 (Kurosh, A. G.et al., editors), Fizmatgiz, Moscow, 1959, pp. 13120. (Russian)Google Scholar
Zamov, N. K. and Sharonov, V. I. [1969] On a class of strategies used in establishing provability by the resolution method, in Slisenko, [1969], pp. 5464 (Russian), 26–31 (English).Google Scholar
Zaslavskiĭ, I. D. [1963] On some differences between basic and subordinate variables in logico-mathematical calculi, Mathematical questions of cybernetics and computational techniques, Trudy Vychislitel' nogo Tsentra Akademii Nauk Armyanskoĭ SSR i Erevanskogo Gosudarstvennogo Universiteta, vol. 1, pp. 1329. (Russian)Google Scholar
Zaslavskiĭ, I. D. and Tseĭtin, G. S. [1964] On a generalized principle of constructive choice, Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 72, pp. 344347; English translation, American Mathematical Society Translations, ser. 2, vol. 99 (1972), pp. 228–232.Google Scholar