Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T21:24:06.896Z Has data issue: false hasContentIssue false

Paires élémentaires de corps pseudo-finis: dénombrement des complétions (Elementary pairs of pseudo-finite fields: counting completions)

Published online by Cambridge University Press:  12 March 2014

Hélène Lejeune*
Affiliation:
11 Rue F.J. Bouille, 92 260 Fontenay-Aux-Roses, France
*
Current address: 2 ruelle S' Pierre, 91 590 Cerny, France, E-mail: [email protected]

Abstract

Let Π be a complete théorie of pseudo-finite fields. In this article we prove that, in the langage of fields to which we add a unary predicate for a substructure, the theory of non trivial elementary pairs of models of Π has completions, that is, the maximum that could exist.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ax, J., The elementary theory of finite fields, Annals of Math, vol. 88 (1968), pp. 239271.CrossRefGoogle Scholar
[2]Bousearen, E. and Poizat, B., Des belles paires aux beaux uples, this Journal, vol. 53 (1988), pp. 434442.Google Scholar
[3]Fried, D. and Jarden, M., Field Arithmetic, Springer Verlag, Berlin, 1986.CrossRefGoogle Scholar
[4]Lejeune, H., Paires de corps PAC. parfaits, paires de corps pseudo-finis, th se de l'universit Paris 7, 1995.Google Scholar
[5]Seitenov, S. M., Theory of finite fields with an additional predicate distinguishing a subfield, Siberian Mathematical Journal, vol. 19 (1978), pp. 278285.CrossRefGoogle Scholar