Article contents
On second order intuitionistic propositional logic without a universal quantifier
Published online by Cambridge University Press: 12 March 2014
Abstract
We examine second order intuitionistic propositional logic, IPC2. Let ℱ∃ a be the set of formulas with no universal quantification. We prove Glivenko's theorem for formulas in ℱ∃ that is, for φ ∈ ℱ∃, φ is a classical tautology if and only if ┐┐φ is a tautology of IPC2. We show that for each sentence φ ∈ ℱ∃ (without free variables), φ is a classical tautology if and only if φ is an intuitionistic tautology. As a corollary we obtain a semantic argument that the quantifier ∀ is not definable in IPC2 from ⊥, ⋁, ⋀, →, ∃.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2009
References
REFERENCES
- 7
- Cited by