Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T19:12:37.037Z Has data issue: false hasContentIssue false

On Meyer and Lambert's quantificational calculus FQ

Published online by Cambridge University Press:  12 March 2014

Hugues Leblanc*
Affiliation:
Temple University

Extract

The semantical account that Meyer and Lambert give in [7] of their quantificational calculus FQ can be considerably simplified, and—supposing as the authors do at the close of their paper that ‘ = ’ counts as a primitive sign—so can their axiom system for FQ.

(1) As the authors remark, axiom schema 102 can be simplified to read : A ⊃ (∀Χ)A, where Χ does not occur free in A. Following Tarski's [9], it can be further simplified: A ⊃ (∀Χ)A, where Χ does not occur in A.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hailperin, T., Quantification theory and empty individual domains, this Journal, vol. 18 (1953), pp. 197200.Google Scholar
[2]Hintikka, K. J. J., Existential presuppositions and existential commitments, Journal of philosophy, vol. 56 (1959), pp. 125137.CrossRefGoogle Scholar
[3]Leblanc, H. and Hailperin, T., Nondesignating singular terms, Philosophical review, vol. 68 (1959), pp. 129136.CrossRefGoogle Scholar
[4]Leblanc, H., A simplified account of validity and implication, this Journal, vol. 33 (1968), pp. 231235.Google Scholar
[5]Leblanc, H. and Meyer, R. K., Open formulas and the empty domain, Archiv für Mathematische Logik und Grundlagenforschung (to appear).Google Scholar
[6]Łukasiewicz, J., Elementy logiki matematycznej, Wydawnictwe Kola Matematycznofizcznege Sluchaczow Uniwersytetu Warszawskiege, Warsaw, 1929.Google Scholar
[7]Meyer, R. K. and Lambert, K., Universally free logic and standard quantification theory, this Journal, vol. 33 (1968), pp. 826.Google Scholar
[8]Mostowski, A., On the rules of proof in the pure functional calculus of the first order, this Journal, vol. 16 (1951), pp. 107111.Google Scholar
[9]Tarski, A., A simplified formalization of predicate logic with identity, Archiv für Mathematische Logik und Grundlagenforschung, vol. 7 (1965), pp. 6179.CrossRefGoogle Scholar