Article contents
Nonrecursive tilings of the plane. I
Published online by Cambridge University Press: 12 March 2014
Extract
A finite set of tiles (unit squares with colored edges) is said to tile the plane if there exists an arrangement of translated (but not rotated or reflected) copies of the squares which fill the plane in such a way that abutting edges of the squares have the same color. The problem of whether there exists a finite set of tiles which can be used to tile the plane but not in any periodic fashion was proposed by Hao Wang [9] and solved by Robert Berger [1]. Raphael Robinson [7] gives a more detailed history and a very economical solution to this and related problems; we will assume that the reader is familiar with §4 of [7]. In 1971, Dale Myers asked whether there exists a finite set of tiles which can tile the plane but not in any recursive fashion. If we make an additional restriction (called the origin constraint) that a given tile must be used at least once, then the positive answer is given by the main theorem of this paper. Using the Turing machine constructed here and a more complicated version of Berger and Robinson's construction, Myers [5] has recently solved the problem without the origin constraint.
Given a finite set of tiles T 1, …, Tn , we can describe a tiling of the plane by a function f of two variables ranging over the integers. f(i, j) = k specifies that the tile Tk is to be placed at the position in the plane with coordinates (i, j). The tiling will be said to be recursive if f is a recursive function.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1974
References
REFERENCES
- 28
- Cited by