Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T06:42:40.452Z Has data issue: false hasContentIssue false

New Examples of Small Polish Structures

Published online by Cambridge University Press:  12 March 2014

Jan Dobrowolski*
Affiliation:
Instytut Matematyczny, Uniwersytet Wrocławski, PL. Grunwaldzki 2/4, 50-384 Wrocław, Poland, E-mail: [email protected]

Abstract

We answer some questions from [4] by giving suitable examples of small Polish structures. First, we present a class of small Polish group structures without generic elements. Next, we construct a first example of a small non-zero-dimensional Polish G-group.

Keywords

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Camerlo, R., Dendrites as polish structures, Proceedings of the American Mathematical Society, vol. 139 (2011), no. 6, pp. 22172225.CrossRefGoogle Scholar
[2] Dijkstra, J. J., A criterion for Erdös spaces, Proceedings of the Edinburgh Mathematical Society, vol. 48 (2005), pp. 595601.CrossRefGoogle Scholar
[3] Dijkstra, J. J., Van Mill, Jan, and Steprāns, Juris, Complete Erdös space is unstable, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 137 (2004), pp. 465473.CrossRefGoogle Scholar
[4] Krupiński, K., Some model theory of Polish structures, Transactions of the American Mathematical Society, vol. 362 (2010), pp. 34993533.CrossRefGoogle Scholar
[5] Krupiński, K. and Wagner, F., Small, nm-stable compact G-groups, Israel Journal of Mathematics, vol. 194 (2013), no. 2, pp. 907933.CrossRefGoogle Scholar
[6] Newelski, L., Small profinite groups, this Journal, vol. 66 (2001), pp. 859872.Google Scholar
[7] Newelski, L., Small profinite structures, Transactions of the American Mathematical Society, vol. 354 (2002), pp. 925943.CrossRefGoogle Scholar