Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T02:41:31.122Z Has data issue: false hasContentIssue false

Multiplication complexe et équivalence élémentaire dans le langage des corps (Complex multiplication and elementary equivalence in the language of fields)

Published online by Cambridge University Press:  12 March 2014

Xavier Vidaux*
Affiliation:
Département de Mathématiques, Université du Maine, Avenue Olivier Messiaen, 72085 le Mans Cedex 9, France, E-mail: [email protected]

Abstract

Let K and K′ be two elliptic fields with complex multiplication over an algebraically closed field k of characteristic 0. non k-isomorphic, and let C and C′ be two curves with respectively K and K′ as function fields. We prove that if the endomorphism rings of the curves are not isomorphic then K and K′ are not elementarily equivalent in the language of fields expanded with a constant symbol (the modular invariant). This theorem is an analogue of a theorem from David A. Pierce in the language of k-algebras.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RÉFÉRENCES

[1]Becker, L., Henson, C. W., and Rubel, L. A., First order conformai invariants, Annals of Mathematics, vol. 112 (1980), no. 2, pp. 123178.CrossRefGoogle Scholar
[2]Duret, J.-L., Sur la théorie élémentaire des corps de fonctions, this Journal, vol. 51 (1986), no. 4, pp. 948956.Google Scholar
[3]Duret, J.-L., Equivalence élémentaire et isomorphisme des corps de courbe sur un corps algébriquement clos, this Journal, vol. 57 (1992), no. 3, pp. 808823.Google Scholar
[4]Hartshorne, R., Algebraic geometry, Springer-Verlag, New-York, 1977.CrossRefGoogle Scholar
[5]Lang, S.,Elliptic functions, 2nd edition, Graduate Texts in Mathematics, Springer Verlag, 1987.CrossRefGoogle Scholar
[6]Pierce, D. A., Function fields and elementary equivalence, Bulletin of the London Mathenatical Society, vol. 31 (1999), no. 4.Google Scholar
[7]Silverman, J. H., The arithmetic of elliptic curves, Springer Verlag, 1986.CrossRefGoogle Scholar
[8]Val, P. Du, Elliptic functions and elliptic curves, London Mathematical Society Lecture Note Series, no. 9, Cambridge University Press, 1973.CrossRefGoogle Scholar
[9]Vidaux, X., Équivalence élémentaire de corps elliptiques, Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 330 (2000), pp. 14.Google Scholar