Article contents
A minimal degree not realizing least possible jump
Published online by Cambridge University Press: 12 March 2014
Extract
The least possible jump for a degree of unsolvability a is its join a ∪ 0′ with 0′. Friedberg [1] showed that each degree b ≥ 0′ is the jump of a degree a realizing least possible jump (i.e., satisfying the equation a′ = a ∪ 0′). Sacks (cf. Stillwell [8]) showed that most (in the sense of Lebesgue measure) degrees realize least possible jump. Nevertheless, degrees not realizing least possible jump are easily found (e.g., any degree b ≥ 0′) even among the degrees <0′ (cf. Shoenfield [5]) and the recursively enumerable (r.e.) degrees (cf. Sacks [3]).
A degree is called minimal if it is minimal in the natural partial ordering of degrees excluding least element 0. The existence of minimal degrees <0” was first shown by Spector [7]; Sacks [3] succeeded in replacing 0” by 0′ using a priority argument. Yates [9] asked whether all minimal degrees <0′ realize least possible jump after showing that some do by exhibiting minimal degrees below each r.e. degree. Cooper [2] subsequently showed that each degree b > 0′ is the jump of a minimal degree which, as corollary to his method of proof, realizes least possible jump. We show with the aid of a simple combinatorial device applied to a minimal degree construction in the manner of Spector [7] that not all minimal degrees realize least possible jump. We have observed in conjunction with S. B. Cooper and R. Epstein that the new combinatorial device may also be applied to minimal degree constructions in the manner of Sacks [3], Shoenfield [6] or [4] in order to construct minimal degrees <0′ not realizing least possible jump. This answers Yates' question in the negative. Yates [10], however, has been able to draw this as an immediate corollary of the weaker result by carrying out the proof in his new system of prioric games.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1974
References
REFERENCES
- 16
- Cited by