Article contents
GAMES AND RAMSEY-LIKE CARDINALS
Published online by Cambridge University Press: 30 January 2019
Abstract
We generalise the α-Ramsey cardinals introduced in Holy and Schlicht (2018) for cardinals α to arbitrary ordinals α, and answer several questions posed in that paper. In particular, we show that α-Ramseys are downwards absolute to the core model K for all α of uncountable cofinality, that strategic ω-Ramsey cardinals are equiconsistent with remarkable cardinals and that strategic α-Ramsey cardinals are equiconsistent with measurable cardinals for all α > ω. We also show that the n-Ramseys satisfy indescribability properties and use them to provide a game-theoretic characterisation of completely ineffable cardinals, as well as establishing further connections between the α-Ramsey cardinals and the Ramsey-like cardinals introduced in Gitman (2011), Feng (1990), and Sharpe and Welch (2011).
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2019
References
REFERENCES
- 2
- Cited by