Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T20:17:00.825Z Has data issue: false hasContentIssue false

Defining transcendentals in function fields

Published online by Cambridge University Press:  12 March 2014

Jochen Koenigsmann*
Affiliation:
Universität Konstanz, Fachbereich Mathematik und Statistik Fach D204, 78457 Konstanz, Germany, E-mail: [email protected]

Abstract

Given any field K, there is a function field F/K in one variable containing definable transcendental over K, i.e., elements in F / K first-order definable in the language of fields with parameters from K. Hence, the model-theoretic and the field-theoretic relative algebraic closure of K in F do not coincide. E.g., if K is finite, the model-theoretic algebraic closure of K in the rational function field K(t) is K(t).

For the proof, diophantine ∅-definability ofK in F is established for any function field F/K in one variable, provided K is large, or K× /(K×)n is finite for some integer n > 1 coprime to char K.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bélair, L. and Duret, J.-L., Définissabilité dans les corps de fonctions p-adiques, this Journal, vol. 56 (1991), no. 3, pp. 783785.Google Scholar
[2]Bélair, L. and Duret, J.-L., Indécidabilité des corps de courbe réelle, this Journal, vol. 59 (1994), no. 1, pp. 8791.Google Scholar
[3]Bergelson, V. and Shapiro, D. B., Multiplicative subgroups of finite index in a ring, Proceedings of the American Mathematical Society, vol. 116 (1992), no. 4, pp. 885896.CrossRefGoogle Scholar
[4]Chatzidakis, Z., Dries, L. V. D., and Macintyre, A., Definable sets over finite fields, Journal für die Reine und Angewandte Mathematik, vol. 427 (1992), pp. 107135.Google Scholar
[5]Chevalley, C., Introduction to the theory of algebraic functions of one variable, AMS Mathematical Surveys VI, 1951.CrossRefGoogle Scholar
[6]Delon, F., Separably closed fields, Model Theory and Algebraic Geometry (Bouscaren, E., editor), Lecture Notes in Mathematics, vol. 1696, Springer, 1998, pp. 143176.CrossRefGoogle Scholar
[7]Duret, J.-L., Sur la théorie élémentaire des corps de fonctions, this Journal, vol. 51 (1986), no. 4, pp. 948965.Google Scholar
[8]Fulton, W., Algebraic Curves, Benjamin, 1969.Google Scholar
[9]Hurwitz, A., Analytische Gebilde mit eindeutigen Transformationen in sich, Mathematische Annalen, vol. 41 (1893), pp. 403422.CrossRefGoogle Scholar
[10]Iwasawa, K. and Tamagawa, T., On the group of automorphisms of a function field, Journal of the Mathematical Society of Japan, vol. 3 (1951), no. 1, pp. 137147, and also in vol.4 (1952), pp. 100–101.CrossRefGoogle Scholar
[11]Matiyasevich, Y., Enumerable sets are Diophantine, Soviet Mathematics Doklady, vol. 11 (1970), pp. 354357.Google Scholar
[12]Poincaré, H., Sur un théorème de M. Fuchs, Acta Mathematica, vol. 7 (1885), pp. 110.CrossRefGoogle Scholar
[13]Pop, F., Embedding problems over large fields, Annals of Mathematics, vol. 144 (1996), pp. 134.CrossRefGoogle Scholar
[14]Robinson, J., Definability and decision problems in arithmetic, this Journal, vol. 14 (1949), pp. 98114.Google Scholar
[15]Robinson, R., The undecidability of pure transcendental extensions of real fields, Zeitschrift für Mathenatische Logik und Grundlagen der Mathematik, vol. 10 (1964), pp. 275282.CrossRefGoogle Scholar
[16]Roquette, P., Über die Automorphismengruppe eines algebraischen Funktionenkörpers, Archiv der Mathematik, vol. III (1952), pp. 343350.CrossRefGoogle Scholar
[17]Rosenlicht, M., Automorphisms offunction fields, Transactions of the American Mathematical Society, vol. 79 (1955), pp. 111.CrossRefGoogle Scholar
[18]Rumely, R., Undecidability and definability for the theory of global fields, Transactions of the American Mathematical Society, vol. 262 (1980), no. 1, pp. 195217.CrossRefGoogle Scholar
[19]Scharlau, W., Quadratic and hermitian forms, Springer, 1985, Grundlehren270.CrossRefGoogle Scholar
[20]Schmid, H. L., Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharakteristik, Journal für die Reine und Angewandte Mathematik, vol. 179 (1938), pp. 515.CrossRefGoogle Scholar
[21]Silverman, J. H., The arithmetic of elliptic curves, Springer, Heidelberg, 1986.CrossRefGoogle Scholar
[22]Stichtenoth, H., Algebraic function fields and codes, Springer, Heidelberg, 1993.Google Scholar
[23]Weierstraß, K., Aus einem noch nicht veröffentlichten Briefe an Herrn P. Schwarz, Werke Bd. II, pp. 235244.Google Scholar