Article contents
Defining transcendentals in function fields
Published online by Cambridge University Press: 12 March 2014
Abstract
Given any field K, there is a function field F/K in one variable containing definable transcendental over K, i.e., elements in F / K first-order definable in the language of fields with parameters from K. Hence, the model-theoretic and the field-theoretic relative algebraic closure of K in F do not coincide. E.g., if K is finite, the model-theoretic algebraic closure of K in the rational function field K(t) is K(t).
For the proof, diophantine ∅-definability ofK in F is established for any function field F/K in one variable, provided K is large, or K× /(K×)n is finite for some integer n > 1 coprime to char K.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2002
References
REFERENCES
- 7
- Cited by