Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T17:20:46.192Z Has data issue: false hasContentIssue false

Definable structures in the lattice of recursively enumerable sets

Published online by Cambridge University Press:  12 March 2014

E. Herrmann*
Affiliation:
Humboldt-Universität, Berlin, DDR

Abstract

It will be shown that in the lattice of recursively enumerable sets one can define elementarily with parameters a structure isomorphic to (), i.e. isomorphic to the lattice of sets together with a unary predicate selecting out exactly the sets.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Herrmann, E., Verbandseigenschaften der rekursiv aufzählbaren Mengen, Seminarberichte der Humboldt-Universität, Sektion Mathematik, no. 36 (1981).Google Scholar
[2]Herrmann, E., Orbits of hyperhypersimple sets and the lattice of Σ30 sets, this Journal, vol. 48 (1983), pp. 693699.Google Scholar
[3]Lachlan, A. H., On the lattice of recursively enumerable sets, Transactions of the American Mathematical Society, vol. 130 (1968), pp. 137.CrossRefGoogle Scholar
[4]Maass, W., Major subsets and automorphisms of recursively enumerable sets, Recursion theory, Proceedings of Symposia in Pure Mathematics, vol. 42, American Mathematical Society, Providence, Rhode Island (to appear).Google Scholar
[5]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[6]Soare, R. I., Recursively enumerable sets and degrees, Bulletin of the American Mathematical Society, vol. 84 (1978), pp. 11491181.CrossRefGoogle Scholar