Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T12:18:10.279Z Has data issue: false hasContentIssue false

Countable structures of given age

Published online by Cambridge University Press:  12 March 2014

H. D. Macpherson
Affiliation:
School of Mathematical Sciences, Queen Mary and Westfield College, London E1 4NS, England, E-mail: [email protected]
M. Pouzet
Affiliation:
Département de Mathématiques, Université Claude-Bernard, (Lyon 1), 69622 Villeurbanne, France, E-mail: lmdi@frcpn11
R. E. Woodrow
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada, E-mail: [email protected]

Abstract

Let L be a finite relational language. The age of a structure over L is the set of isomorphism types of finite substructures of . We classify those ages for which there are less than 2ω countably infinite pairwise nonisomorphic L-structures of age .

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cameron, P. J., Oligomorphic permutation groups, London Mathematical Society Lecture Note Series, vol. 152, Cambridge University Press, Cambridge, 1990.CrossRefGoogle Scholar
[2]Chang, C. C. and Keisler, H. J., Model theory, North-Holland, Amsterdam, 1973.Google Scholar
[3]Fraïssé, R., Theory of relations, North-Holland, Amsterdam, 1986.Google Scholar
[4]Hodkinson, I. M. and Macpherson, H. D., Relational structures determined by their finite induced substructures, this Journal, vol. 53 (1988), pp. 222230.Google Scholar
[5]Kantor, W. M., Liebeck, M. W., and Macpherson, H. D., 0-categorical structures smoothly approximated by finite substructures, Proceedings of the London Mathematical Society, ser. 3, vol. 59 (1989), pp. 439463.CrossRefGoogle Scholar
[6]Lachlan, A. H., Complete theories with only universal and existential axioms, this Journal, vol. 52 (1987), pp. 698711.Google Scholar
[7]Lachlan, A. H., Complete coinductive theories. I, Transactions of the American Mathematical Society, vol. 319 (1990), pp. 209241.CrossRefGoogle Scholar
[8]Lachlan, A. H., Complete coinductive theories. II, Transactions of the American Mathematical Society, vol. 328 (1991), pp. 527562.Google Scholar
[9]Macpherson, H. D., Orbits of infinite permutation groups, Proceedings of the London Mathemat-icol Society, ser. 3, vol. 51 (1985), pp. 246284.CrossRefGoogle Scholar
[10]Macpherson, H. D., Absolutely ubiquitous structures and ℵ0-categorical groups, Quarterly Journal of Mathematics, Oxford Second Series, vol. 39 (1988), pp. 483500.CrossRefGoogle Scholar
[11]Pouzet, M., Application de la notion de relation presque-enchamable au dénombrement des restrictions finies d'une relation, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 27 (1981), pp. 289332.CrossRefGoogle Scholar
[12]Schmerl, J., Coinductive ℵ0-categorical theories, this Journal, vol. 55 (1990), pp. 11301137.Google Scholar
[13]Shelah, S., Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978.Google Scholar