Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:26:54.310Z Has data issue: false hasContentIssue false

Completely metrisable groups acting on trees

Published online by Cambridge University Press:  12 March 2014

Christian Rosendal*
Affiliation:
Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Il 60607-7045, USA, E-mail: [email protected], URL: http://www.math.uic.edu/~rosendal

Abstract

We consider actions of completely metrisable groups on simplicial trees in the context of the Bass–Serre theory. Our main result characterises continuity of the amplitude function corresponding to a given action. Under fairly mild conditions on a completely metrisable group G, namely, that the set of elements generating a non-discrete or finite subgroup is somewhere dense, we show that in any decomposition as a free product with amalgamation, G = A *cB, the amalgamated groups A, B and C are open in G.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alperin, R., Compact groups acting on trees, Houston Journal of Mathematics, vol. 6 (1980), no. 4, pp. 439441.Google Scholar
[2]Alperin, R., Locally compact groups acting on trees, Pacific Journal of Mathematics, vol. 100 (1982), no. 1, pp. 2332.CrossRefGoogle Scholar
[3]Alperin, R. and Bass, H., Length functions of group actions on ∧-trees, Combinatorial group theory and topology (Alta, Utah, 1984), Annals of Mathematical Studies, 111, Princeton University Press, Princeton, NJ, 1987, pp. 265378.CrossRefGoogle Scholar
[4]Bass, H., Some remarks on group actions on trees, Communications in Algebra, vol. 4 (1976), no. 12, pp. 10911126.CrossRefGoogle Scholar
[5]Bergman, G. M., Generating infinite symmetric groups, Bulletin of the London Mathematical Society, vol. 38 (2006), no. 3, pp. 429440.CrossRefGoogle Scholar
[6]Culler, M. and Morgan, J. W., Group actions on R-trees, Proceedings of the London Mathematical Society, vol. 55 (1987), no. 3, pp. 571604.CrossRefGoogle Scholar
[7]Dudley, R. M., Continuity of homomorphisms, Duke Mathematical Journal, vol. 28 (1961), pp. 587594.CrossRefGoogle Scholar
[8]Guirardel, V. and Ivanov, A., Non-nesting actions of Polish groups on real trees, Journal of Pure and Applied Algebra, vol. 214 (2010), pp. 20742077.CrossRefGoogle Scholar
[9]Hofmann, K. H. and Morris, S. A., The structure of compact groups, de Gruyter Studies in Mathematics 25, de Gruyter, Berlin, 1998.Google Scholar
[10]Ivanov, A. and Kossak, R., Automorphism group actions on trees, Mathematical Logic Quarterly, vol. 50 (2004), no. 1, pp. 7176.CrossRefGoogle Scholar
[11]Ivanov, A. A., Closed groups induced by finitary permutations and their actions on trees, Proceedings of the American Mathematical Society, vol. 130 (2002), no. 3, pp. 875882.CrossRefGoogle Scholar
[12]Kechris, A. S., Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
[13]Khélif, A., Uncountable homomorphic images of Polish groups are not ℵ1-free groups, Bulletin of the London Mathematical Society, vol. 37 (2005), no. 1, pp. 5460.CrossRefGoogle Scholar
[14]Koppelberg, S. and Tits, J., Une propriété des produits directs infinis de groupes finis isomorphes, Comptes Rendus Mathématique. Académie des Sciences. Paris. Série A, vol. 279 (1974), pp. 583585.Google Scholar
[15]Macpherson, D. and Thomas, S., Comeagre conjugacy classes and free products with amalgamation, Discrete Mathematics, vol. 291 (2005), no. 1–3, pp. 135142.CrossRefGoogle Scholar
[16]Morris, S. A. and Nickolas, P., Locally compact group topologies on an algebraic free product of groups, Journal of Algebra, vol. 38 (1976), no. 2, pp. 393397.CrossRefGoogle Scholar
[17]Rosendal, C., The generic isometry and measure preserving homeomorphism are conjugate to their powers, Fundamenta Mathematical vol. 205 (2009), no. 1, pp. 127.CrossRefGoogle Scholar
[18]Rosendal, C., A topological version of the Bergman property, Forum Mathematicum, vol. 21 (2009), no. 2, pp. 299332.CrossRefGoogle Scholar
[19]Saxl, J., Shelah, S., and Thomas, S., Infinite products offinite simple groups, Transactions of the American Mathematical Society, vol. 348 (1996), no. 11, pp. 46114641.CrossRefGoogle Scholar
[20]Serre, J.-P., Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.Google Scholar
[21]Shelah, S., A countable structure does not have a free uncountable automorphism group, Bulletin of the London Mathematical Society, vol. 35 (2003), no. 1, pp. 17.CrossRefGoogle Scholar
[22]Tits, J., Sur le groupe des automorphismes d'un arbre. Essays on topology and related topics, Mémoires dédiés à Georges de Rham, Springer-Verlag, 1970.Google Scholar
[23]Tits, J., A “Theorem of Lie–Kolchin” for trees, Contributions to Algebra. A collection of papers dedicated to Ellis Kolchin, Academic Press, 1977.Google Scholar