Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-18T14:56:14.209Z Has data issue: false hasContentIssue false

Borel reductibility and Hölder (α) embeddability between Banach spaces

Published online by Cambridge University Press:  12 March 2014

Longyun Ding*
Affiliation:
School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, P.R.China, E-mail: [email protected]

Abstract

We investigate Borel reducibility between equivalence relations E(X; p) = X/ℓp(X)'s where X is a separable Banach space. We show that this reducibility is related to the so called Hölder(α) embeddability between Banach spaces. By using the notions of type and cotype of Banach spaces, we present many results on reducibility and unreducibility between E(Lr; p)'s and E(c0; p)'s for r, p Є [1, +∞).

We also answer a problem presented by Kanovei in the affirmative by showing that C(ℝ+)/C0(ℝ+) is Borel bireducible to ℝ/c0.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aharoni, I., Every separable metric space is Lipschitz equivalent to a subset of , Isruel Journal of Mathematics, vol. 19 (1974), pp. 284291.CrossRefGoogle Scholar
[2]Albiac, F. and Kalton, N. J., Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer-Verlag, 2006.Google Scholar
[3]Becker, H. and Kechris, A. S., The descriptive set theory of Polish group actions, London Mathematical Society Lecture Notes Series, vol. 232, Cambridge University Press, 1996.CrossRefGoogle Scholar
[4]Benyamini, Y. and Lindenstrauss, J., Geometric nonlinear functional analysis, Colloquium Publications, vol. 48, American Mathematical Society, 2000.Google Scholar
[5]Bourgain, J., Milman, V., and Wolfson, H., On type of metric spaces, Transactions of the American Mathematical Society, vol. 294 (1986), pp. 295317.CrossRefGoogle Scholar
[6]Dougherty, R. and Hjorth, G., Reducibility and nonreducibility between ℓp equivalence relations, Transactions of the American Mathematical Society, vol. 351 (1999), pp. 18351844.CrossRefGoogle Scholar
[7]Farah, I., Basis problem for turbulent actions II: c0-equalities, Proceedings of the London Mathematical Society, vol. 82 (2001), no. 3, pp. 130.CrossRefGoogle Scholar
[8]Gao, S., Equivalence relations and classical Banach spaces, Mathematical logic in Asia, proceedings of the 9th Asian logic conference, Novosibirsk, Russia, 2005 (Goncharov, S. S., Downey, R., and Ono, H., editors), World Scientific, 2006, pp. 7089.Google Scholar
[9]Gao, S., Invariant descriptive set theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 293, CRC Press, 2008.CrossRefGoogle Scholar
[10]Hjorth, G., Actions by the classical Banach spaces, this Journal, vol. 65 (2000), pp. 392420.Google Scholar
[11]Kanovei, V., Borel equivalence relations: Structure and classification, University Lecture Series, vol. 44, American Mathematical Society, 2008.Google Scholar
[12]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, II: Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97, Springer-Verlag, 1979.CrossRefGoogle Scholar
[13]Maurey, B. and Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Mathematica, vol. 58 (1976), pp. 4590.CrossRefGoogle Scholar
[14]Mendel, M. and Naor, A., Euclidean quotients of finite metric spaces, Advances in Mathematics, vol. 189 (2004), pp. 451494.CrossRefGoogle Scholar
[15]Mendel, M. and Naor, A., Metric cotype, Annals of Mathematics, vol. 168 (2008), pp. 247298.CrossRefGoogle Scholar
[16]Pisier, G., Holomorphic semigroups and the geometry of Banach spaces, Annals of Mathematics, vol. 115 (1982), pp. 375392.CrossRefGoogle Scholar
[17]Talagarnd, M., Approximating a helix in finiely many dimensions, Annales de l'Institute Henri Poincaré Probabilités et Statistiques, vol. 28 (1992), pp. 355363.Google Scholar
[18]Tomczak-Jaegermann, N., Banach–Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, 1989.Google Scholar