No CrossRef data available.
Article contents
To analyse target volume variations during SIB-IMRT of squamous cell carcinoma of uterine cervix
Published online by Cambridge University Press: 14 April 2020
Abstract
To assess volume variations in target site due to changes in bladder filling and rectal content including air bubbles during simultaneous-integrated boost intensity-modulated radiotherapy (SIB-IMRT) of patients suffering from squamous cell carcinoma of uterine cervix.
A total of ten patients of squamous cell carcinoma of uterine cervix were enrolled in this analysis. All patients were planned to undergo SIB-IMRT using 10 MV beam. Planning target volume of the tumour (PTVtumour) and PTVnodal were prescribed with 5,040 and 4,500 cGy doses, respectively. During planning, PTVtumour V95%, PTVnodal V95% and organs at risk (OARs) (bladder, rectum, femoral heads and small bowel) volumes were measured from initial CT planning scans taken with full bladder. CT scans were acquired once in a week over a treatment period of 5·5 weeks. Intra-treatment scans with full bladder were then fused with the planning scans to determine variations in the target volume and the OAR volume. Changes in radiation dose to the PTVtumour and the PTVnodal were also assessed by comparing intra-treatment scans with the planning (first) scans.
All patients showed intra-treatment bladder volume larger than the planning bladder volume. Difference between planning bladder and intra-treatment bladder volumes ranged from 4·5 to 49%. Rectal volume varied from 17 to 60 cc. A wide variation between planning and intra-treatment air volumes was found in most of the patients. When comparing initial and inter-fraction air volumes, the maximum difference was 366·67%. Due to bladder and rectal volume variations, PTVtumour V95% and PTVnodal V95% doses did not remain constant throughout the treatment. The maximum discrepancy between intra-treatment PTVtumour dose and planning PTVtumour dose was 12·15%. The maximum difference between planning and inter-fraction PTV V95% was 48·28%. PTVnodal dose observed from scan taken in last week of treatment was 12·87% less than planning PTVnodal dose analysed from planning CT scan. Maximum difference in planning and inter-fraction PTVnodal V95% was 57·78%.
Inconsistent bladder and rectal volumes had a significant impact on target volume and dosage during an entire course of SIB-IMRT. For radiotherapy of gynaecological malignancies, data on variations in PTV should be acquired on daily basis to target radiation dose to the tumour site with accuracy.
Keywords
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press