Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:13:21.672Z Has data issue: false hasContentIssue false

Selection of gamma analysis acceptance criteria in IMRT QA using Gafchromic EBT3 film dosimetry

Published online by Cambridge University Press:  03 December 2018

Muhammad Isa Khan
Affiliation:
Department of Physics, University of Gujarat, Gujarat, Pakistan
Muhammad Shakil
Affiliation:
Department of Physics, University of Gujarat, Gujarat, Pakistan
Muhammad Bilal Tahir
Affiliation:
Department of Physics, University of Gujarat, Gujarat, Pakistan
Muhammad Rafique
Affiliation:
Department of Physics, University of Gujarat, Gujarat, Pakistan
Tahir Iqbal
Affiliation:
Department of Physics, University of Gujarat, Gujarat, Pakistan
Aliza Zahoor
Affiliation:
Department of Physics, University of Gujarat, Gujarat, Pakistan Department of Radiation Oncology, Shaukat Khanum Cancer Hospital and Research Center, Lahore, Pakistan
Jalil ur Rehman
Affiliation:
Department of Physics, BUITEMS, Quetta, Pakistan
Khalid Iqbal
Affiliation:
Department of Radiation Oncology, Shaukat Khanum Cancer Hospital and Research Center, Lahore, Pakistan
James C. L. Chow*
Affiliation:
Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
*
Author for correspondence: James Chow, Radiation Medicine Program, UHN, 700 University Avenue, ON, Toronto, Canada M5G 1Z5. Tel: 416 946 4501. Fax: 416 946 6566. E-mail: [email protected]

Abstract

Background and purpose

This study reported the justification and selection of acceptable γ criteria with respect to low (6 MV) and high (15 MV) photon beams for intensity-modulated radiation therapy quality assurance (IMRT QA) using the Gafchromic external beam therapy 3 (EBT3) film.

Materials and methods

Five-field step-and-shoot IMRT was used to treat 16 brain IMRT patients using the dual-energy DHX-S linear accelerator (Varian Medical System, Palo Alto, CA, USA). Dose comparisons between computed values of the treatment planning system (TPS) and Gafchromic EBT3 film were evaluated based on γ analysis using the Film QA Pro software. The dose distribution was analysed with gamma area histograms (GAHs) generated using different γ criteria (3%/2 mm, 3%/3 mm and 5%/3 mm) for the 6 and 15 MV photon beams, to optimise the best distance-to-agreement (DTA) criteria with respect to the beam energy.

Results

From the comparison between the dose distributions acquired from the TPS and EBT3 film, a DTA criterion of 3%/2 mm showed less dose differences (DDs) with passing rates up to 93% for the 6 MV photon beams, while for the 15 MV a relaxed DTA criterion of 5%/3 mm was consistent with the DD acceptability criteria with a 95% passing rate.

Conclusions

Our results suggested that high-energy photon beams required relaxed DTA criteria for the brain IMRT QA, while low-energy photon beams showed better results even with tight DTA criteria.

Type
Original Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Cite this article: Isa Khan M, Shakil M, Tahir MB, Rafique M, Iqbal T, Zahoor A, Rehman Ju, Iqbal K, Chow JCL. (2019) Selection of gamma analysis acceptance criteria in IMRT QA using Gafchromic EBT3 film dosimetry. Journal of Radiotherapy in Practice18: 127–131. doi: 10.1017/S1460396918000602

References

1. Alber, M, Broggi, S, De Wagter, C et al. Guidelines for the verification of IMRT. Brussels, Belgium: ESTRO, 2008.Google Scholar
2. Ezzell, GA, Galvin, JM, Low, D et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 2003; 30: 20892115.Google Scholar
3. Saminathan, S, Manickam, R, Chandraraj, V, Supe, SS. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification. J Appl Clin Med Phys 2010; 11: 116127.Google Scholar
4. Li, JG, Yan, G, Liu, C. Comparison of two commercial detector arrays for IMRT quality assurance. J Appl Clin Med Phys 2009; 10: 6274.Google Scholar
5. Poppe, B, Blechschmidt, A, Djouguela, A et al. Two-dimensional ionization chamber arrays for IMRT plan verification. Med Phys 2006; 33: 10051015.Google Scholar
6. Palmer, AL, Nisbet, A, Bradley, D. Verification of high dose rate brachytherapy dose distributions with EBT3 Gafchromic film quality control techniques. Phys Med Biol 2013; 58: 497511.Google Scholar
7. D’Agostino, E, Bogaerts, R, Defraene, G, de Freitas Nascimento, L, Van den Heuvel, F, Verellen, D, Duchateau, M, Schoonjans, W, Vanhavere, F. Peripheral doses in radiotherapy: a comparison between IMRT, VMAT and tomotherapy. Radiat Meas 2013; 57: 6267.Google Scholar
8. Sancar, A, Ayyangar, KM, Nehru, RM et al. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity modulated radiation therapy dose distribution verification. Med Dosim 2006; 31: 273282.Google Scholar
9. van Battum, LJ, Hoffmans, D, Piersma, H, Heukelom, S. Accurate dosimetry with Gafchromic EBT film of a 6 MV photon beam in water: what level is achievable? Med Phys 2008; 35 (2): 704e16.Google Scholar
10. Menegotti, L, Delana, A, Martignano, A. Radiochromic film dosimetry with flatbed scanners: a fast and accurate method for dose calibration and uniformity correction with single film exposure. Med Phys 2008; 35 (7): 3078e101.Google Scholar
11. Huet, C, Moignier, C, Fontaine, J, Clairand, I. Characterization of the gafchromic EBT3 films for dose distribution measurements in stereotactic radiotherapy. Radiat Meas 2014; 71: 364368.Google Scholar
12. Ferreira, BC, Lopes, MC, Capela, M. Evaluation of an Epson flatbed scanner to read Gafchromic EBT films for radiation dosimetry. Phys Med Biol 2009; 54 (4): 1073e85.Google Scholar
13. Bouchard, H, Lacroix, F, Beaudoin, G, Carrier, JF, Kawrakow, I. On the characterization and uncertainty analysis of radiochromic film dosimetry. Med Phys 2009; 36 (6): 1931e46.Google Scholar
14. Hartmann, B, Martisiková, M, Jäkel, O. Technical note: homogeneity of Gafchromic EBT2 film. Med Phys 2010; 37 (4): 1753e6.Google Scholar
15. Richley, L, John, AC, Coomber, H, Fletcher, S. Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy. Phys Med Biol 2010; 55 (9): 2601e17.Google Scholar
16. Arjomandy, B, Tailor, R, Anand, A. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys 2010; 37 (5): 1942e7.Google Scholar
17. Carrasco, MA, Perucha, M, Luis, FJ, Baeza, M, Herrador, M. A comparison between radiochromic EBT2 film model and its predecessor EBT film model. Phys Med 2013; 29: 412e22.Google Scholar
18. León-Marroquín, EY, Camacho-López, MA, García-Garduño, OA, Alfredo Herrera-González, J, Eduardo Villarreal-Barajas, J, Gutiérrez-Fuentes, R, Contreras-Bulnes, J. Spectral analysis of the EBT3 radiochromic film irradiated with 6 MV X-ray radiation. Radiat Meas 2016; 89: 8288.Google Scholar
19. Sorriaux, J, Kacperek, A, Rossomme, S et al. Evaluation of Gafchromic EBT3 films characteristics in therapy photon, electron and proton beams. Phys Med 2013; 29: 599e606.Google Scholar
20. Low, DA, Dempsey, JF. Evaluation of the gamma dose distribution comparison method. Med Phys 2003; 30: 24552464.Google Scholar
21. Low, DA, Harms, WB, Mutic, S, Purdy, JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998; 25: 656661.Google Scholar
22. Ezzell, GA, Burmeister, JW, Dogan, N et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 2009; 36: 53595373.Google Scholar
23. Van Dyk, J. Commissioning and quality assurance of modern radiation treatment planning systems, AAPM Refresher Course TU-A-BRA-1 July 24, 2001.Google Scholar
24. Harms, WB Sr, Low, DA, Wong, JW, Purdy, JA. A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med Phys 1998; 25 (10): 18301836.Google Scholar
25. Wendling, M, Zijp, LJ, McDermott, LN et al. A fast algorithm for gamma evaluation in 3D. Med Phys 2007; 34 (5): 16471654.Google Scholar
26. Spezi, E, Lewis, DG. Gamma histograms for radiotherapy plan evaluation. Radiother Oncol 2006; 79 (2): 224230.Google Scholar
27. Stock, M, Kroupa, B, Georg, D. Interpretation and evaluation of the γ index and the γ index angle for the verification of IMRT hybrid plans. Phys Med Biol 2005; 50 (3): 399.Google Scholar
28. Spezi, E, Lewis, DG, Millin, A, Cuffin, R. MC based QA of IMRT. Radiother Oncol 2003; 68 (S1): S46S46.Google Scholar
29. Steers, JM, Fraass, BA. IMRT QA: selecting gamma criteria based on error detection sensitivity. Med Phys 2016; 43 (4): 19821994.Google Scholar
30. Stasi, M, Bresciani, S, Miranti, A, Maggio, A, Sapino, V, Gabriele, P. Pretreatment patient‐specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys 2012; 39 (12): 76267634.Google Scholar
31. Almond, PR, Biggs, PJ, Coursey, BM et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 1999; 26: 18471870.Google Scholar
32. Iqbal, K, Isa, M, Buzdar, SA, Gifford, KA, Afzal, M. Treatment planning evaluation of sliding window and multiple static segments technique in intensity modulated radiotherapy. Rep Pract Oncol Radiother 2013; 18 (2): 101106.Google Scholar
33. Gillis, S, De Wagter, C, Bohsung, J, Perrin, B, Williamms, P, Mijnheer, BJ. An inter-centre quality assurance network for IMRT verification: results of the ESTRO QUASIMODO project. Radiother Oncol 2005; 76 (3): 340353.Google Scholar
34. Bohsung, J, Gillis, S, Arrans, R et al. IMRT treatment planning—a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol 2005; 76 (3): 354361.Google Scholar
35. Low, DA, Harms, WB, Mutic, S, Purdy, JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998; 25 (5): 656661.Google Scholar
36. Harms, WB Sr, Low, DA, Wong, JW, Purdy, JA. A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med Phys 1998; 25 (10): 18301836.Google Scholar
37. Yeo, IJ, Kim, JO. A procedural guide to film dosimetry: with emphasis on IMRT. Madison, WI: Medical Physics Publishing, 2004.Google Scholar
38. Elawady, RA, Attalla, EM, Elshemey, WM, Shouman, T, Alsayed, AA. Dose verification of intensity modulated radiotherapy in head and neck tumors. Int J Cancer Ther Oncol 2014; 2 (3): 02037.Google Scholar
39. Smilowitz, JB, Das, IJ, Feygeiman, V, Fraas, BA, Kry, SF, Marshall, IR. AAPM Medical Physics Practice Guideline 5. a.: Commissioning and QA of treatment planning dose calculations—megavoltage photon and electron beams. J Appl Clin Med Phys 2015; 16 (5): 1434.Google Scholar
40. Spezi, E, Lewis, DG. Gamma histograms for radiotherapy plan evaluation. Radiother Oncol 2006; 79 (2): 224230.Google Scholar
41. Chaikh, A, Giraud, JY, Perrin, E, Bresciani, JP, Balosso, J. The choice of statistical methods for comparisons of dosimetric data in radiotherapy. Radiat Oncol 2014; 9 (1): 205.Google Scholar
42. Chaikh, A, Balosso, J. Statistical control process to compare and rank treatment plans in radiation oncology: impact of heterogeneity correction on treatment planning in lung cancer. Transl Lung Cancer Res 2016; 5 (6): 688694.Google Scholar
43. Fenoglietto, P, Laiberte, B, Ailleres, N, Riou, O, Dubois, JB, Azira, D. Eight years of IMRT quality assurance with ionization chambers and film dosimetry: experience of the Montpellier Comprehensive Cancer Center. Radiat Oncol 2011; 6 (1): 85.Google Scholar
44. Mohammadi, N, Miri-Hakimabad, SH, Rafat-Motavalli, L. A Monte Carlo study for photoneutron dose estimations around the high-energy Linacs. J Biomed Phys Eng 2014; 4 (4): 127.Google Scholar
45. Wang, L, Yorke, E, Desobry, G, Chui, CS. Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries. J Appl Clin Med Phys 2002; 3 (1): 5159.Google Scholar
46. Allen, PD, Chaudhri, MA. Photoneutron production in tissue during high energy bremsstrahlung radiotherapy. Phys Med Biol 1988; 33 (9): 1017.Google Scholar
47. Ghasemi, A, Allahverdi Pourfallah, T, Akbari, MR, Babapour, H, Shahidi, M. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac. J Med Phys / Assoc Med Physicists India 2015; 40 (2): 9094.Google Scholar
48. Zhang, Y, Feng, Y, Ming, X, Deng, J. Energy modulated photon radiotherapy: a Monte Carlo feasibility study. New York, USA: BioMed Research International, 2016.Google Scholar
49. Hideghéty, K, Szabo, ER, Polanek, R et al. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation. J Instrum 2017; 12 (3): C03038.Google Scholar