Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T21:18:59.810Z Has data issue: false hasContentIssue false

Investigation of central electrode artefacts of ionisation chamber effect on dose calculation using advanced calculation algorithms AAA and Acuros XB

Published online by Cambridge University Press:  18 June 2020

V. S. Shaiju*
Affiliation:
Radiation Physics Division, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
Rajesh Kumar
Affiliation:
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
K. V. Rajasekhar
Affiliation:
Meenakshi Medical College Hospital and Research Institute, Chennai, Tamilnadu, India
George Zacharia
Affiliation:
Radiation Physics Division, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
Debjani Phani
Affiliation:
Radiation Physics Division, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
Saju Bhasi
Affiliation:
Radiation Physics Division, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
Raghuram K Nair
Affiliation:
Radiation Physics Division, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
*
Author for correspondence: V. S. Shaiju, Radiation Physics Division, Regional Cancer Centre, Thiruvananthapuram, Kerala, India. Email: [email protected]

Abstract

Aim:

To investigate the central electrode artefact effect of different ion chambers in the verification phantom using the dose calculation algorithms Analytical Anisotropic Algorithm (AAA) and Acuros XB.

Materials and methods:

The dosimetric study was conducted using an in-house fabricated polymethyl methacrylate head phantom. The treatment planning system (TPS)-calculated doses in the phantom with detectors were compared against the dummy detector fillets using AAA and Acuros XB algorithm. The planned and measured doses were compared for the study.

Results:

The mean percentage variation in volumetric-modulated arc therapy plans using Acuros XB and the measurement in the head phantom are statistically significant (p-value = 0.001) for FC65 and CC13 chambers. In small volume chambers (A14SL and CC01), the measured and TPS-calculated dose shows a good agreement.

Findings:

The study confirmed the CT set of the phantom with detectors (FC65 and CC13) give more artefacts/heterogeneity caused a significant variation in dose calculation using Acuros XB. Therefore, the study suggests a method of using phantom CT set with the dummy detector for mean dose calculation for the Acuros XB algorithm.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huang, G, Medlam, G, Lee, J, et al. Error in the delivery of radiation therapy: results of a quality assurance review. Int J Radiat Oncol 2005; 61(5): 15901595. doi:10.1016/j.ijrobp.2004.10.017.CrossRefGoogle ScholarPubMed
Laub, W, Thomas, CR. Patient-specific quality assurance measurements for VMAT treatments: do we really catch errors? J Clin Oncol 2013; 31(31_suppl): 8181. doi:10.1200/jco.2013.31.31_suppl.81.CrossRefGoogle Scholar
Low, C, Toye, W, Phung, P, Huston, C. Patient-specific quality assurance protocol for volumetric modulated arc therapy using dose volume histogram. J Med Phys 2018; 43(2): 112118.Google ScholarPubMed
Roche, M, Crane, R, Powers, M, Crabtree, T. Agility MLC transmission optimization in the Monaco treatment planning system. J Appl Clin Med Phys 2018; 19(5): 473482. doi:10.1002/acm2.12399.CrossRefGoogle ScholarPubMed
Fogliata, A, Nicolini, G, Clivio, A, Vanetti, E, Cozzi, L. Dosimetric evaluation of Acuros XB advanced dose calculation algorithm in heterogeneous media. Radiat Oncol 2011; 6: 82. doi:10.1186/1748-717X-6-822.CrossRefGoogle ScholarPubMed
Sievinen, J., Ulmer, W., Kaissl, W.. AAA photon dose calculation model in Eclipse, Palo Alto (CA): varian medical Systems 2005; 118(2894.).Google Scholar
Chen, W-Z, Xiao, Y, Li, J. Impact of dose calculation algorithm on radiation therapy. World J Radiol 2014; 6(11): 874880.CrossRefGoogle ScholarPubMed
Laub, WU, Wong, T. The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 2003; 30(3): 341347. doi:10.1118/1.1544678.CrossRefGoogle ScholarPubMed
Low, DA, Parikh, P, Dempsey, JF, Wahab, S, Huq, S. Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams. Med Phys 2003; 30(7): 17061711. doi:10.1118/1.1582558.CrossRefGoogle ScholarPubMed
Hoffmann, L, Jørgensen, M-BK, Muren, LP, Petersen, JBB. Clinical validation of the Acuros XB photon dose calculation algorithm, a grid-based Boltzmann equation solver. Acta Oncol 2012; 51(3): 376385. doi:10.3109/0284186X.2011.629209.CrossRefGoogle ScholarPubMed
Muir, BR, Rogers, DWO. The central electrode correction factor for high-Z electrodes in small ionization chambers: Pcel calculated: High-Z. Med Phys 2011; 38(2): 10811088. doi:10.1118/1.3532818.CrossRefGoogle ScholarPubMed
Link, TM, Berning, W, Scherf, S, et al. CT of metal implants: reduction of artifacts using an extended CT scale technique: J Comput Assist Tomogr 2000; 24(1): 165172. doi:10.1097/00004728-200001000-00029.CrossRefGoogle ScholarPubMed
Giantsoudi, D, De Man, B, Verburg, J, et al. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol 2017; 62(8): R49R80. doi:10.1088/1361-6560/aa5293.CrossRefGoogle ScholarPubMed
Glide-Hurst, C, Chen, D, Zhong, H, Chetty, IJ. Changes realized from extended bit-depth and metal artifact reduction in CT: extended bit-depth and metal artifact reduction in CT. Med Phys 2013; 40(6Part1): 061711. doi:10.1118/1.4805102.CrossRefGoogle ScholarPubMed
Shaiju, VS, Kumar, R, Varadarajulu, RK, et al. Estimation of dosimetric discrepancy due to use of OnyxTM embolic system in Stereotactic Radiosurgery/Radiotherapy (SRS/SRT) planning. Biomed Phys Eng Express 2020; 6(4): 045006. doi:10.1088/2057-1976/ab872d.CrossRefGoogle Scholar