Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:13:18.335Z Has data issue: false hasContentIssue false

High-dose-rate brachytherapy with external beam radiotherapy in the treatment of carcinoma of cervix: dosimetric and radiobiologic analysis

Published online by Cambridge University Press:  01 December 2009

Kamlesh Passi
Affiliation:
Department of Radiation Oncology, M. D. Oswal Cancer Treatment & Research Foundation, Ludhiana (Pb), India
Than S. Kehwar*
Affiliation:
Medical Physics Division, Department of Radiation Oncology, University of Pittsburgh Cancer Institute, UPMC Cancer Centers, Pittsburgh, PA, USA
Rajesh Vashistha
Affiliation:
Department of Radiation Oncology, M. D. Oswal Cancer Treatment & Research Foundation, Ludhiana (Pb), India
Bikramjit Singh
Affiliation:
Department of Radiation Oncology, M. D. Oswal Cancer Treatment & Research Foundation, Ludhiana (Pb), India
Veena Jain
Affiliation:
Department of Gynecology & Oncology, M. D. Oswal Cancer Treatment & Research Foundation, Ludhiana (Pb), India
Sureshchandra J. Gupta
Affiliation:
Vidylankar School of Information Technology, Mumbai, India
*
Correspondence to: Than S. Kehwar, Department of Radiation Oncology, University of Pittsburgh Cancer Institute, UPMC St. Margaret Hospital, 815 Freeport Road, Pittsburgh, PA 15215, USA. E-mail: [email protected]

Abstract

Purpose: The aim of this study was to find out equivalency between two high-dose-rate (HDR) fractionation schemes, relevance to the International Commission on Radiation Units and Measurements report-38 (ICRU-38) reference volume with respect to point A dose and other ICRU reference points in two-dimensional (2D) planning.

Methods and Materials: Forty-nine patients having carcinoma of cervix of stages II–IIIB treated with external beam radiotherapy plus HDR brachytherapy (BT) were analysed. The external beam radiotherapy dose of 45 Gy/25 fractions delivered in 5 weeks followed by HDR BT delivered either in two fractions with 9.5 Gy per fraction (Group-1) or in three fractions with 7.5 Gy per fraction (Group-2) to point A. ICRU-38 recommendations were followed to determine reference volume with respect to Manchester dose point A, and biologically effective dose (BED) at different points.

Results: BED10 at bladder and rectum reference points were 17.11 ± 12.36 Gy and 13.92 ± 5.71 Gy in Group-1, and 15.69 ± 11.43 Gy and 16.24 ± 5.45 Gy in Group-2, respectively; and BED3 were 33.03 ± 29.67 Gy and 25.01 ± 12.35Gy in Group-1, and 27.00 ± 26.85 Gy and 27.44 ± 11.00 Gy in Group-2, respectively. The HDR BT reference volumes were 233.47 ± 27.30 cm3 and 227.83 ± 32.35 cm3 and corresponding CBED10 at point A with proliferation correction were 76.59 ± 2.31 Gy, and 76.41 ± 2.15 Gy for Group-1 and Group-2, respectively. The CBED10 and CBED3 at point B were 46.38 ± 2.26 Gy and 82.23 ± 0.72 Gy, respectively, for Group-1; and 45.03 ± 2.11 Gy and 82.89 ± 0.44 Gy, respectively, for Group-2.

Conclusion: No significant differences were found in the results of two HDR fractionation schemes. ICRU reference volume with respect to point A dose correlates with tumour control and is a good pre-treatment predictor in 2D planning. Neither ICRU bladder and rectum reference points nor trapezoid points showed correlation with complications. The trapezoid points did not also show any correlation with loco-regional control.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gault, EW, Asirvadharam, M. Carcinoma of cervix—a review of 525 cases diagnosed by biopsy. Indian J Med Sci 1951; 5(7): 297311.Google Scholar
Dass, A, Mookerjee, G. Statistical survey of cervical cancer. Indian J Obstet Gynaecol 1961; 12(1): 5156.Google Scholar
Vizcaino, AP, Moreno, V, Bosch, FX, Muñoz, N, Barros-Dios, XM, Parkin, DM. International trends in the incidence of cervical cancer: I. adenocarcinoma and adenosquamous cell carcinomas. Int J Cancer 1998; 75: 536545.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Davis, KP, Stanhope, CR, Garton, GR, Atkinson, EJ, O'Brien, PC. Invasive vaginal carcinoma: analysis of early-stage disease. Gynecol Oncol 1991; 42(2): 131136.CrossRefGoogle ScholarPubMed
Kirkbride, P, Fyles, A, Rawlings, A, Manchul, L, Levin, W, Murphy, KJ, Simm, J. Carcinoma of the vagina—experiences at the Princess Margaret Hospital. Gynecol Oncol 1995; 56(3): 435443.CrossRefGoogle ScholarPubMed
Kucera, H, Langer, M, Smekal, G, et al. Zur Klinik und Radiotherapie des primaren Vaginalkarzinoms (352 Falle). Geburtsh Frauenheilk 1983; 43: 443447.CrossRefGoogle Scholar
Kucera, H, Vavra, N. Radiation management of primary carcinoma on the vagina: clinical and histopathological variables associated with survival. Gynecol Oncol 1991; 40(1): 1216.CrossRefGoogle ScholarPubMed
Leung, S, Sexton, M. Radical radiation therapy for the carcinoma of the vagina—impact of treatment modalities on outcome: Peter MacCallum Cancer Institute Experience 1970–1990. Int J Radiat Oncol Biol Phys 1993; 25(3): 413418.CrossRefGoogle Scholar
Nanavati, PJ, Fanning, J, Hilgers, RD, Hallstrom, J, Crawford, D. High-dose-rate brachytherapy in primary stage I and II vaginal cancer. Gynecol Oncol 1993; 51(1): 6771.CrossRefGoogle Scholar
Perez, CA, Camel, HM, Galakatos, AE, Grigsby, PW, Kuske, RR, Buchsbaum, G, Hederman, MA. Definitive irradiation in carcinoma of the vagina: evaluation of long term results. Int J Radiat Oncol Biol Phys 1988; 15(6): 12831290.CrossRefGoogle Scholar
Fine, BA, Piver, MS, McAuley, M, Driscoll, D. The curative potential of radiation therapy in the treatment of primary vaginal carcinoma. Am J Clin Oncol 1996; 19: 3944.CrossRefGoogle ScholarPubMed
Kehwar, TS. Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther 2005; 1(3): 168179.CrossRefGoogle ScholarPubMed
Kehwar, TS, Bhardwaj, AK. Methods to calculate normal tissue complication and tumour control probabilities for fractionated inhomogeneous dose distribution of intensity modulated radiation therapy. J Radioth Pract 2008; 7: 151157.CrossRefGoogle Scholar
Kehwar, TS, Akber, SF, Passi, K. Qualitative dosimetric and radiobiological evaluation of high-dose-rate interstitial brachytherapy implants. Int J Med Sci 2008; 5(1): 4149.CrossRefGoogle ScholarPubMed
Kehwar, TS, Akber, SF. Assessment of tumor control probability for high-dose-rate interstitial brachytherapy implants. Rep Pract Oncol Radioth 2008; 13(2): 7477.CrossRefGoogle Scholar
Schafer, U, Micke, O, Prott, FJ, et al. Ergebnisse der primaren Strahlentherapie beim. Vaginalkarzinom Strahlenther Onkol 1997; 173: 272280.CrossRefGoogle Scholar
Kucera, H, Mock, U, Knocke, TH, Kucera, E, Pötter, R. Radiotherapy alone for invasive vaginal cancer: outcome with intracavitary high dose rate brachytherapy versus conventional low dose rate brachytherapy. Acta Obstet Gynecol Scand 2001; 80(4): 355360.CrossRefGoogle ScholarPubMed
International Commission on Radiation Units and Measurements (ICRU). Dose and volume specification for reporting intracavitary therapy in gynecology, ICRU Report, 38. Bethesda, MD: ICRU, 1985.Google Scholar
Peterson, R, Parker, HM. Dosage system for gamma-ray therapy. Br J Radiol. 1934; 7: 592632.CrossRefGoogle Scholar
Pérez, CA. Principles and Practice of Radiation Oncology JB. Lippincott Company. 4th edition 2004. Uterine Cervix: 1800–1915.Google Scholar
Thames, H, Hendry, J.Fractionation in radiotherapy. London, UK: Taylor & Francis, 1987.Google Scholar
Fowler, J. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62(740): 679694.CrossRefGoogle ScholarPubMed
Dale, R. The use of small fraction numbers in high dose-rate gynaecological afterloading: some radiobiological considerations. Br J Radiol 1990; 63(748): 290294.CrossRefGoogle ScholarPubMed
Orton, CG. High and low dose-rate brachytherapy for cervical carcinoma [Review]. Acta Oncol 1998; 37(2): 117125.CrossRefGoogle ScholarPubMed
Zaider, M, Minerbo, GN. Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys Med Biol 2000; 45(2): 279293.CrossRefGoogle ScholarPubMed
Brenner, D, Geard, C, Hall, E. Mossbauer cancer therapy doubts. Nature 1989; 339(6221): 185186.CrossRefGoogle ScholarPubMed
Tsang, RW, Fyles, AW, Kirkbride, P, Levin, W, Manchul, LA, Milosevic, MF, Rawlings, GA, Banerjee, D, Pintilie, M, Wilson, GD. Proliferation measurements with flow cytometry Tpot in cancer of the uterine cervix: correlation between two laboratories and preliminary clinical results. Int J Radiat Oncol Biol Phys 1995; 32(5): 13191329.CrossRefGoogle ScholarPubMed
Benedet, JL, Bender, H, Jones, H, Ngan, HY, Pecorelli, S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet 2000; 70(2): 209262.Google ScholarPubMed
Brenner, DJ, Huang, Y, Hall, EJ. Fractionated high dose rate versus low dose rate regimens for intracavitary brachytherapy of the cervix: equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys 1991; 21(6): 14151423.CrossRefGoogle ScholarPubMed
Gunderson, T. Clinical Radiation Oncology. Livingstone 2nd Edition 2000. Uterine Cervix: 886.Google Scholar
Akine, Y, Tokita, N, Ogino, T, Kajiura, Y, Tsukiyama, I, Egawa, S. Dose equivalence for high dose ratio to low dose rate intracavitary irradiation in the treatment of cancer of the uterine cervix. Int J Radiat Oncol Biol Phys 1990; 19(6): 15111514.CrossRefGoogle Scholar
Fu, KK, Phillips, TL. High dose rate versus low dose rate intracavitary brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 1990; 19(3): 791796.CrossRefGoogle ScholarPubMed
Okawa, T, Sakata, S, Kita-Okawa, M, et al. Comparison of HDR versus LDR regimens for intracavitary brachytherapy of cervical cancer: Japanese experience. In: Mould RF (ed). International Brachytherapy. The Netherlands: Nucletron International B, 1992, 1317.Google Scholar
Bahena, JH, Almendar, SL, Arroy, HC, Trejo, MB. Three fraction high dose rate brachytherapy schedule for treatment of locally advanced uterine cervix cancer center: clinical results, emphasis in dosimetric parameters and morbidity. Cancerologia 2008; 3: 105110.Google Scholar
Selke, P, Roman, TN, Souhami, L, Freeman, CR, Clark, BG, Evans, MD, Pla, C, Podgorsak, EB. Treatment results of high dose rate brachytherapy in patients with carcinoma of the cervix. Int J Radiat Oncol Biol Phys 1993; 27(4): 803809.CrossRefGoogle ScholarPubMed
Petereit, D and Pearcey, R. Literature analysis of high dose rate brachytherapy fractionation schedules in the treatment of cervical cancer: is there an optimal fractionation schedule? Int J Radiat Oncol Biol Phys 1999; 43(2): 359366.CrossRefGoogle ScholarPubMed
Nag, S, Erickson, B, Thomadsen, B, Orton, C, Demanes, JD, Petereit, D. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2000; 48(1): 201211.CrossRefGoogle ScholarPubMed
Perez, CA, Fox, S, Lockett, MA, Grigsby, PW, Camel, HM, Galakatos, A, Kao, MS, Williamson, J. Impact of dose in outcome of irradiation alone in carcinoma of the uterine cervix: analysis of two different methods. Int J Radiat Oncol Biol Phys 1991; 21(4): 885898.CrossRefGoogle ScholarPubMed
Pourquier, H, Dubois, JB, Delard, R. Cancer of the uterine cervix: dosimetric guidelines for prevention of late rectal and sigmoid complications as a result of radiotherapeutic treatment. Int J Radiat Oncol Biol Phys 1982; 8(11): 18871895.CrossRefGoogle ScholarPubMed
Van Lancker, M, Storme, G. Prediction of severe late complications in fractionated, high-dose-rate brachytherapy in gynecological applications. Int J Radiat Oncol Biol Phys 1991; 20(5): 11251129.CrossRefGoogle ScholarPubMed
Orton, CG. Dose dependence of complication rates in cervix cancer radiotherapy. Int J Radiat Oncol Biol Phys 1986; 12(1): 3744.CrossRefGoogle ScholarPubMed
Roman, TN, Souhami, L, Freeman, CR, Pla, C, Evans, MD, Podgorsak, EB, Mendelew, K. High dose rate afterloading intracavitary therapy in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 1991; 20(5): 921926.CrossRefGoogle ScholarPubMed
Stryker, JA, Bartholomew, M, Velkley, DE, Cunningham, DE, Mortel, R, Craycraft, G, Shafer, J. Bladder and rectal complications following radiotherapy for cervix cancer. Gynecol Oncol 1988; 29(1): 111.CrossRefGoogle ScholarPubMed
Clark, BG, Souhami, L, Roman, TN, Evans, MD, Pla, C. Rectal complications in patients with carcinoma of the cervix treated with concomitant cisplatin and external beam irradiation with high dose rate brachytherapy: a dosimetric analysis. Int J Radiat Oncol Biol Phys 1994; 28(5): 12431250.CrossRefGoogle ScholarPubMed
Van Lancker, M, Storme, G. Prediction of severe late complications in fractionated, high-dose-rate brachytherapy in gynecological applications. Int J Radiat Oncol Biol Phys 1991; 20(5): 11251129.CrossRefGoogle ScholarPubMed
Lambin, P, Gerbaulet, A, Kramar, A, Scalliet, P, Haie-Meder, C, Malaise, EP, Chassagne, D. Phase III trial comparing two low dose rates in brachytherapy of cervix carcinoma: report at two years. Int J Radiat Oncol Biol Phys 2000; 25(3): 405412.CrossRefGoogle Scholar
Esche, BA, Crook, JM, Horiot, JC. Dosimetric methods in the optimization of radiotherapy for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 1987; 13(8): 11831192.CrossRefGoogle ScholarPubMed