Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T04:55:34.592Z Has data issue: false hasContentIssue false

Granulomatous slack skin disease: a new combined proton and photon therapy approach with a reported case response

Published online by Cambridge University Press:  30 July 2014

Jonathan B. Farr*
Affiliation:
Midwest Proton Radiotherapy Institute (Renamed Indiana Health Proton Therapy Center in 2008), Indiana University, Bloomington, IN, USA
Allan F. Thornton
Affiliation:
Midwest Proton Radiotherapy Institute (Renamed Indiana Health Proton Therapy Center in 2008), Indiana University, Bloomington, IN, USA
Avril O’Ryan-Blair
Affiliation:
Midwest Proton Radiotherapy Institute (Renamed Indiana Health Proton Therapy Center in 2008), Indiana University, Bloomington, IN, USA
Chris E. Allgower
Affiliation:
Midwest Proton Radiotherapy Institute (Renamed Indiana Health Proton Therapy Center in 2008), Indiana University, Bloomington, IN, USA
Arnold L. Schroeter
Affiliation:
Mayo Clinic, Department of Dermatology, Rochester, MN, USA
Andries N. Schreuder
Affiliation:
Midwest Proton Radiotherapy Institute (Renamed Indiana Health Proton Therapy Center in 2008), Indiana University, Bloomington, IN, USA
*
Correspondence to: Jonathan B. Farr, Department of Radiological Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN 38105 2794, USA. Tel: +901 595 8059. Fax: +901 595 3981. E-mail: [email protected]

Abstract

Purpose

Here, we report the feasibility and long-term efficacy of a granulomatous slack skin disease (GSSD) treatment with combined high-energy photon and proton beams.

Patient and methods

A GSSD patient with abdominal disease volume 25×15×2–4 cm deep was recommended for treatment at this institution. In addition to photons and electrons, high-energy protons delivered with advanced planning techniques and patient positioning were used. The patient was irradiated to a total dose of 40 Gy by using 20 Gy matched photon and electrons followed by 20 Gy equivalent protons delivered by using innovative range compensation and patient positioning.

Results

The test patient tolerated the treatment well and is now a 10-year survivor of the disease.

Conclusions

Treatment of GSSD with protons is feasible. The range and narrow penumbra properties of the proton beam provided an ideal capability to match fields accurately to cover large volumes while also sparing underlying normal tissues.

Type
Original Articles
Copyright
© Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.LeBoit, P E, Zackheim, H S, White, C R Jr. Granulomatous variants of cutaneous T-cell lymphoma. The histopathology of granulomatous mycosis fungoides and granulomatous slack skin. Am J Surg Pathol 1988; 12 (2): 8395.Google Scholar
2.van Haselen, C W, Toonstra, J, van der Putte, S J, van Dongen, J J, van Hees, C L, van Vloten, W A. Granulomatous slack skin. Report of three patients with an updated review of the literature. Dermatology 1998; 196 (4): 382391.Google Scholar
3.Convit, J, Kerdel, F, Goihman, M, Rondon, A J, Soto, J M. Progressive, atrophying, chronic granulomatous dermohypodermitis. Autoimmune disease? Arch Dermatol 1973; 107 (2): 271274.Google Scholar
4.LeBoit, P E, Beckstead, J H, Bond, B, Epstein, W L, Frieden, I J, Parslow, T G. Granulomatous slack skin: clonal rearrangement of the T-cell receptor beta gene is evidence for the lymphoproliferative nature of a cutaneous elastolytic disorder. J Invest Dermatol 1987; 89 (2): 183186.Google Scholar
5.Grammatico, P, Balus, L, Scarpa, Set al.Granulomatous slack skin: cytogenetic and molecular analyses. Cancer Genet Cytogenet 1994; 72 (2): 96100.Google Scholar
6.Kempf, W, Ostheeren-Michaelis, S, Paulli, Met al. Granulomatous mycosis fungoides and granulomatous slack skin: a multicenter study of the Cutaneous Lymphoma Histopathology Task Force Group of the European Organization for Research and Treatment of Cancer (EORTC). Arch Dermatol 2008; 144 (12): 16091617.Google Scholar
7.Benisovich, V, Papadopoulos, E, Amorosi, E L, Zucker-Franklin, D, Silber, R. The association of progressive, atrophying, chronic, granulomatous dermohypodermitis with Hodgkin’s disease. Cancer 1988; 62 (11): 24252429.Google Scholar
8.Le, T, Piérard, G. Granulomatous slack skin syndrome and Hodgkin’s disease. Ital Gen Rev Dermatol 1986; 23: 4849.Google Scholar
9.Wollina, U, Graefe, T, Füller, T. Granulomatous slack skin or granulomatous mycosis fungoides – a case report. Complete response to percutaneous radiation and interferon alpha. J Cancer Res Clin Oncol 2002; 128 (1): 5054.Google Scholar
10.Fischer, M, Wohlrab, J, Audring, T H, Sterry, W, Marsch, W C. Granulomatous mycosis fungoides. Report of two cases and review of the literature. J Eur Acad Dermatol Venereol 2000; 14 (3): 196202.Google Scholar
11.Gokdemir, G, Argon, A, Sakiz, D, Argon, D, Köşlü, A. Granulomatous slack skin: report of a case with response to electron beam therapy. Med Oncol 2008; 25 (2): 178181.Google Scholar
12.Holt, J G, Perry, D J. Some physical considerations in whole skin electron beam therapy. Med Phys 1982; 9 (5): 769776.Google Scholar
13.Podgorsak, E B, Pla, C, Pla, M, Lefebvre, P Y, Heese, R. Physical aspects of a rotational total skin electron irradiation. Med Phys 1983; 10 (2): 159168.Google Scholar
14.Pla, C, Heese, R, Pla, M, Podgorsak, E B. Calculation of surface dose in rotational total skin electron irradiation. Med Phys 1984; 11 (4): 539546.Google Scholar
15.Sharma, S C, Wilson, D L. Dosimetric study of total skin irradiation with a scanning beam electron accelerator. Med Phys 1987; 14 (3): 355358.Google Scholar
16.Lachance, B, Tremblay, D, Pouliot, J. A new penumbra generator for electron fields matching. Med Phys 1997; 24 (4): 485495.Google Scholar
17.Bloch, C, Derenchuk, V, Cameron, Jet al. The Indiana University proton radiation therapy project. Nucl Instrum Methods Phys Res B 1993; 79: 890894.Google Scholar
18.Anferov, V, Broderick, B, Collins, J Cet al.The Midwest Proton Radiation Institute Project at the Indiana University Cyclotron Facility. In: Marti F (ed.). Cyclotrons and their Applications 2001. New York: AIP, 2001: 2729.Google Scholar
19.Mesoloras, G, Sandison, G A, Stewart, R D, Farr, J B, Hsi, W-C. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Med Phys 2006; 33 (7): 24792490.Google Scholar
20.Koehler, A M, Schneider, R J, Sisterson, J M. Range modulators for protons and heavy ions. Nucl Instrum Methods 1975; 131 (3): 437440.Google Scholar
21.Koehler, A M, Schneider, R J, Sisterson, J M. Flattening of proton dose distributions for large-field radiotherapy. Med Phys 1977; 4 (4): 297301.Google Scholar
22.Allgower, C E, Schreuder, A N, Farr, J B, Mascia, A E. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy. Int J Med Robot 2007; 3: 7281.Google Scholar
23.Farr, J B, Mascia, A E, Hsi, W-Cet al.Clinical characterization of a proton beam continuous uniform scanning system with dose layer stacking. Med Phys 2008; 35 (11): 49454954.CrossRefGoogle ScholarPubMed
24.Anferov, V. Combined X–Y scanning magnet for conformal proton radiation therapy. Med Phys 2005; 32 (3): 815818.Google Scholar
25.Farr, J B, O’Ryan-Blair, A, Jesseph, Fet al.Validation of dosimetric field matching accuracy from proton therapy using a robotic patient positioning system. J Appl Clin Med Phys 2010; 11 (2): 3015.Google Scholar
26.International Commission on Radiation Units and Measurements. ICRU Report No. 78: prescribing, recording, and reporting proton-beam therapy. J ICRU 2007; 7: 2.Google Scholar