Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-02T16:42:09.323Z Has data issue: false hasContentIssue false

Dosimetric evaluation of whole-pelvis radiation therapy of prostate cancers: clinical experience

Published online by Cambridge University Press:  18 June 2020

Ernest Osei*
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
Hafsa Mansoor
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
Johnson Darko
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
Beverley Osei
Affiliation:
Department of Health Sciences, McMaster University, Hamilton, ON, Canada
Katrina Fleming
Affiliation:
Department of Radiation Therapy, Grand River Regional Cancer Centre, Kitchener, ON, Canada
Ramana Rachakonda
Affiliation:
Department of Radiation Oncology, Grand River Regional Cancer Centre, Kitchener, ON, Canada
*
Author for correspondence: Ernest Osei, Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada. E-mail: [email protected]

Abstract

Background:

The standard treatment modalities for prostate cancer include surgery, chemotherapy, hormonal therapy and radiation therapy or any combination depending on the stage of the tumour. Radiation therapy is a common and effective treatment modality for low-intermediate-risk patients with localised prostate cancer, to treat the intact prostate and seminal vesicles or prostate bed post prostatectomy. However, for high-risk patients with lymph node involvement, treatment with radiation will usually include treatment of the whole pelvis to cover the prostate and seminal vesicles or prostate bed and the pelvic lymph nodes followed by a boost delivery dose to the prostate and seminal vesicles or prostate bed.

Materials and Methods:

We retrospectively analysed the treatment plans for 179 prostate cancer patients treated at the cancer centre with the volumetric-modulated arc therapy (VMAT) technique via RapidArc using 6 MV photon beam. Patients were either treated with a total prescription dose of 78 Gy in 39 fractions for patients with intact prostate or 66 Gy in 33 fractions for post prostatectomy patients.

Results:

There were 114 (64%) patients treated with 78 Gy/39 and 65 (36%) treated with 66 Gy/34. The mean homogeneity index (HI), conformity index (CI) and uniformity index (UI) for the PTV-primary of patients treated with 78 Gy are 0.06 ± 0.01, 1.04 ± 0.01 and 0.99 ± 0.01, respectively, and the corresponding mean values for patients treated with 66 Gy are 0.06 ± 0.02, 1.05 ± 0.01 and 0.99 ± 0.01, respectively. The mean PTV-primary V95%, V100% and V105% are 99.5 ± 0.5%, 78.8 ± 12.2% and 0.1 ± 0.5%, respectively, for patients treated with 78 Gy and 99.3 ± 0.9%, 78.1 ± 10.6% and 0.1 ± 0.4%, respectively, for patients treated with 66 Gy. The rectal V50Gy, V65Gy, V66.6Gy, V70Gy, V75Gy and V80Gy are 26.8 ± 9.1%, 14.2 ± 5.3%, 13.1 ± 5.0%, 10.8 ± 4.3%, 6.9 ± 3.1% and 0.1 ± 0.1%, respectively, for patients treated with 78 Gy and 33.7 ± 8.4%, 14.1 ± 4.5%, 6.7 ± 4.5%, 0.0 ± 0.2%, 0.0% and 0.0%, respectively, for patients treated with 66 Gy.

Conclusion:

The use of VMAT technique for radiation therapy of high-risk prostate cancer patients is an efficient and reliable method for achieving superior dose conformity, uniformity and homogeneity to the PTV and minimal doses to the organs at risk. Results from this study provide the basis for the development and implementation of consistent treatment criteria in radiotherapy programs, have the potential to establish an evaluation process to define a consistent, standardised and transparent treatment path for all patients that reduces significant variations in the acceptability of treatment plans and potentially improve patient standard of care.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brenner, DR, Weir, HK, Demers, AA et al. Projected estimates of cancer in Canada in 2020. CMAJ 2020; 192(9): E199E205. doi: 10.1503/cmaj.191292.CrossRefGoogle ScholarPubMed
Canadian Cancer Society. Prostate Cancer Statistics. https://www.cancer.ca/en/cancer-information/cancer-type/prostate/statistics/?region=on. Accessed on 17th April 2020.Google Scholar
Rawla, P. Epidemiology of prostate cancer. World J Oncol 2019; 10(2): 6389. doi: 10.14740/wjon1191.CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD., Jemal, A. Cancer statistics, 2019. Cancer J Clini 2019; 69(1): 734. doi: 10.3322/caac.21551.CrossRefGoogle ScholarPubMed
Darko, J, Osei, E, Fleck, A, Rachakonda, R. Retrospective dosimetric evaluation of VMAT plans for prostate cancer treatment. J Radiother Pract 2018; 18(02): 155164. doi: 10.1017/s1460396918000596.CrossRefGoogle Scholar
Yang, Y, Li, T, Yuan, L et al. Quantitative comparison of automatic and manual IMRT optimization for prostate cancer: the benefits of DVH prediction. J Appl Clin Med Phys 2015; 16(2): 5204. doi: 10.1120/jacmp.v16i2.5204.CrossRefGoogle ScholarPubMed
Peeters, ST, Heemsbergen, WD, Koper, PC et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 2006; 24(13): 19901996. doi: 10.1200/jco.2005.05.2530.CrossRefGoogle ScholarPubMed
Patel, RR, Orton, N, Tomé, WA et al. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiother Oncol 2003; 67(3): 285294. doi: 10.1016/s0167-8140(03)00056-2.CrossRefGoogle ScholarPubMed
Pang, EPP, Knight, K, Hussain, A et al. Reduction of intra-fraction prostate motion – determining optimal bladder volume and filling for prostate radiotherapy using daily 4D TPUS and CBCT. Tech Innov Patient Support Radiat Oncol 2018; 5: 915. doi: 10.1016/j.tipsro.2018.01.003.CrossRefGoogle ScholarPubMed
Matta, R, Chapple, CR, Fisch, M et al. Pelvic complications after prostate cancer radiation therapy and their management: an international collaborative narrative review. Eur Urol 2019; 75(3): 464476. doi: 10.1016/j.eururo.2018.12.003.CrossRefGoogle ScholarPubMed
Hardcastle, N, Tomé, WA, Foo, K et al. Comparison of prostate IMRT and VMAT biologically optimised treatment plans. Med Dosimet 2011; 36(3): 292298. doi: 10.1016/j.meddos.2010.06.001.CrossRefGoogle ScholarPubMed
Dearnaley, DP, Sydes, MR, Graham, JD et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 2007; 8(6): 475487. doi: 10.1016/s1470-2045(07)70143-2.CrossRefGoogle ScholarPubMed
Chen, Z, Yang, Z, Wang, J et al. Dosimetric impact of different bladder and rectum filling during prostate cancer radiotherapy. Radiat Oncol 2016; 11(1): 103. doi: 10.1186/s13014-016-0681-z.CrossRefGoogle ScholarPubMed
Bolla, M, Gonzalez, D, Warde, P et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med 1997; 337(5): 295300. doi: 10.1056/nejm199707313370502.CrossRefGoogle ScholarPubMed
Ashman, JB, Zelefsky, MJ, Hunt, MS, Leibel, SA, Fuks, Z. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63(3): 765771. doi: 10.1016/j.ijrobp.2005.02.050.CrossRefGoogle ScholarPubMed
Aizer, AA, Yu, JB, McKeon, AM, Decker, RH, Colberg, JW, Peschel, RE. Whole pelvic radiotherapy versus prostate only radiotherapy in the management of locally advanced or aggressive prostate adenocarcinoma. Int J Radiat Oncol Biol Phys 2009; 75(5): 13441349. doi: 10.1016/j.ijrobp.2008.12.082.CrossRefGoogle ScholarPubMed
Al-Mamgani, A, Putten, WLV, Wielen, GJVD, Levendag, PC, Incrocci, L. Dose escalation and quality of life in patients with localized prostate cancer treated with radiotherapy: long-term results of the Dutch randomized dose-escalation trial (CKTO 96-10 trial). Int J Radiat Oncol Biol Phys 2011; 79(4): 10041012. doi: 10.1016/j.ijrobp.2009.12.039.CrossRefGoogle Scholar
Poelaert, F, Fonteyne, V, Ost, P et al. Whole pelvis radiotherapy for pathological node-positive prostate cancer. Strahlentherapie und Onkologie. 2017; 193(6): 444451. doi: 10.1007/s00066-016-1094-5.CrossRefGoogle ScholarPubMed
Pasquier, D, Cavillon, F, Lacornerie, T, Touzeau, C, Tresch, E, Lartigau, E. A dosimetric comparison of tomotherapy and volumetric modulated arc therapy in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Int J Radiat Oncol Biol Phys 2013; 85(2): 549554. doi: 10.1016/j.ijrobp.2012.03.046.CrossRefGoogle ScholarPubMed
Myrehaug, S, Chan, G, Craig, T et al. A treatment planning and acute toxicity comparison of two pelvic nodal volume delineation techniques and delivery comparison of intensity-modulated radiotherapy versus volumetric modulated arc therapy for hypofractionated high-risk prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2012; 82(4): e657e662. doi: 10.1016/j.ijrobp.2011.09.006.CrossRefGoogle ScholarPubMed
Davidson, MT, Blake, SJ, Batchelar, DL et al. Assessing the role of volumetric modulated arc therapy (VMAT) relative to IMRT and helical tomotherapy in the management of localized, locally advanced, and post-operative prostate cancer. Int J Radiat Oncol Biol Phys 2011; 80(5): 15501558. doi: 10.1016/j.ijrobp.2010.10.024.CrossRefGoogle ScholarPubMed
Lawton, CA, Desilvio, M, Roach, M et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 2007; 69(3): 646655. doi: 10.1016/j.ijrobp.2007.04.003.CrossRefGoogle ScholarPubMed
Jorgo, K, Polgar, C, Major, T et al. Acute and late toxicity after moderate hypofractionation with simultaneous integrated boost (SIB) radiation therapy for prostate cancer. A single institution, prospective study. Pathol Oncol Res. 2020;26(2): 905912. doi: 10.1007/s12253-019-00623-2.CrossRefGoogle ScholarPubMed
Joo, JH, Kim, YJ, Kim, YS et al. Whole pelvic intensity-modulated radiotherapy for high-risk prostate cancer: a preliminary report. Radiat Oncol J. 2013; 31(4): 199205. doi: 10.3857/roj.2013.31.4.199.CrossRefGoogle ScholarPubMed
Jeong, S, Lee, JH, Chung, MJ et al. Analysis of geometric shifts and proper setup-margin in prostate cancer patients treated with pelvic intensity-modulated radiotherapy using endorectal ballooning and daily enema for prostate immobilization. Medicine 2016; 95(2): e2387. doi: 10.1097/md.0000000000002387.CrossRefGoogle ScholarPubMed
Ishii, K, Ogino, R, Hosokawa, Y et al. Whole-pelvic volumetric-modulated arc therapy for high-risk prostate cancer: treatment planning and acute toxicity. J Radiat Res 2014; 56(1): 141150. doi: 10.1093/jrr/rru086.CrossRefGoogle ScholarPubMed
Ishii, K, Ogino, R, Hosokawa, Y et al. Comparison of dosimetric parameters and acute toxicity after whole pelvic vs prostate-only volumetric-modulated arc therapy with daily image guidance for prostate cancer. Br J Radiol 2016; 89: 20150930.CrossRefGoogle ScholarPubMed
Hegazy, MW, Mahmood, RI, Otaibi, MFA et al. Hypofractionated volumetric modulated arc radiotherapy with simultaneous elective nodal irradiation is feasible in prostate cancer patients: a single institution experience. J Egypt Natl Cancer Inst 2016; 28(2): 101110. doi: 10.1016/j.jnci.2016.04.001.CrossRefGoogle ScholarPubMed
Hesselberg, G, Fogarty, G, Haydu, L et al. Volumetric modulated arc therapy of the pelvic lymph nodes to the aortic bifurcation in higher risk prostate cancer: early toxicity outcomes. BioMed Res Int 2015; 2015: 18. doi: 10.1155/2015/696439.CrossRefGoogle Scholar
Franzese, C, Fogliata, A, D’Agostino, GR et al. Moderate hypofractionated radiotherapy with volumetric modulated arc therapy and simultaneous integrated boost for pelvic irradiation in prostate cancer. J Cancer Res Clin Oncol 2017; 143(7): 13011309. doi: 10.1007/s00432-017-2375-9.CrossRefGoogle ScholarPubMed
Amini, A, Kavanagh, BD, Rusthoven, CG. Improved survival with the addition of radiotherapy to androgen deprivation: questions answered and a review of current controversies in radiotherapy for non-metastatic prostate cancer. Ann Transl Med 2016; 4(1): 14. doi: 10.3978/j.issn.2305-5839.2015.10.13.Google Scholar
Amini, A, Jones, BL, Yeh, N et al. Survival outcomes of whole-pelvic versus prostate-only radiation therapy for high-risk prostate cancer patients with use of the national cancer data base. Int J Radiat Oncol Biol Phys 2015; 93(5): 10521063. doi: 10.1016/j.ijrobp.2015.09.006.CrossRefGoogle ScholarPubMed
Buschmann, M, Sharfo, AWM, Penninkhof, J et al. Automated volumetric modulated arc therapy planning for whole pelvic prostate radiotherapy. Strahlenther Onkolog 2017; 194(4): 333342. doi: 10.1007/s00066-017-1246-2.CrossRefGoogle ScholarPubMed
Praet, CV, Ost, P, Lumen, N et al. Postoperative high-dose pelvic radiotherapy for N prostate cancer: toxicity and matched case comparison with postoperative prostate bed-only radiotherapy. Radiother Oncol 2013; 109(2): 222228. doi: 10.1016/j.radonc.2013.08.021.CrossRefGoogle ScholarPubMed
Song, C, Byun, SJ, Kim, YS et al. Elective pelvic irradiation in prostate cancer patients with biochemical failure following radical prostatectomy: a propensity score matching analysis. PLoS One 2019; 14(4): e0215057. doi: 10.1371/journal.pone.0215057.CrossRefGoogle ScholarPubMed
Aizer, AA, Anderson, NS, Oh, SC et al. The impact of pretreatment prostate volume on severe acute genitourinary toxicity in prostate cancer patients treated with intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2011; 79(2): 379384. doi: 10.1016/j.ijrobp.2009.11.023.CrossRefGoogle ScholarPubMed
Pommier, P, Chabaud, S, Lagrange, J et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma: final results of the european groupe dEtude des Tumeurs Uro-Génitales (GETUG-01) randomized study. Int J Radiat Oncol Biol Phys 2015; 93(3). doi: 10.1016/j.ijrobp.2015.07.112.CrossRefGoogle Scholar
Cahlon, O, Hunt, M, Zelefsky, MJ. Intensity-modulated radiation therapy: supportive data for prostate cancer. Seminars Radiat Oncol 2008; 18(1): 4857. doi: 10.1016/j.semradonc.2007.09.007.CrossRefGoogle ScholarPubMed
Yoo, S, Wu, QJ, Lee, WR et al. Radiotherapy treatment plans with rapidarc for prostate cancer involving seminal vesicles and lymph nodes. Int J Radiat Oncol Biol Phys 2010; 76(3): 935942. doi: 10.1016/j.ijrobp.2009.07.1677.CrossRefGoogle ScholarPubMed
White, P, Yee, CK, Shan, LC et al. A comparison of two systems of patient immobilization for prostate radiotherapy. Radiat Oncol 2014; 9(1). doi: 10.1186/1748-717x-9-29.CrossRefGoogle ScholarPubMed
Roach, M III, Hsu, IC, Chung, H et al. Radiation Therapy Oncology Group RTOG 0924. Androgen deprivation therapy and high dose radiotherapy with or without whole-pelvic radiotherapy in unfavorable intermediate or favorable high risk prostate cancer: a phase III randomized trial. http://scholar.googleusercontent.com/scholar?q=cache:LJVtR0cM23sJ:scholar.google.com/&hl=en&as_sdt=0. Accessed April 2020.Google Scholar
Michalski, J M, Gay, H, Jackson, A et al. Radiation dose volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 2010; 76(3 Suppl): S123S129.CrossRefGoogle ScholarPubMed
Bentzen, SM, Constine, LS, Deasy, JO et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010; 76(3 Suppl): S3S9. doi: 10.1016/j.ijrobp.2009.09.040. PMID: 20171515; PMCID: PMC3431964.CrossRefGoogle Scholar
Viswanathan, AN, Yorke, ED, Marks, LB et al. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys 2010; 76(3 Suppl): S116S122. doi: 10.1016/j.ijrobp.2009.02.090. PMID: 20171505; PMCID: PMC3587780.CrossRefGoogle ScholarPubMed
Michalecki, L, Gabryś, D, Kulik, R et al. Radiotherapy induced hip joint avascular necrosis-two cases report. Rep Pract Oncol Radiother. 2011; 16(5): 198201. doi: 10.1016/j.rpor.2011.04.004. PMID: 24376980; PMCID: PMC3863280.CrossRefGoogle ScholarPubMed
Deville, C, Vapiwala, N, Lin, H, Hwang, W, Tochner, Z, Both, S. Clinical toxicities and dosimetric parameters after whole-pelvis versus prostate bed-only intensity modulated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2010; 78(3): 763772. doi: 10.1016/j.ijrobp.2010.07.859.CrossRefGoogle Scholar