Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T05:19:32.308Z Has data issue: false hasContentIssue false

Comprehensive evaluation of electron radiation dose using beryllium oxide dosimeters at breast radiotherapy

Published online by Cambridge University Press:  07 May 2019

Serdar Şahin*
Affiliation:
1Institute of Nuclear Sciences, Ankara University, Ankara, Turkey; 2Department of Radiation Oncology Clinic, Dr. A. Y. Ankara Oncology Training and Research Hospital, Ankara, Turkey
Eren Şahiner
Affiliation:
1Institute of Nuclear Sciences, Ankara University, Ankara, Turkey;
Fatih Göksel
Affiliation:
2Department of Radiation Oncology Clinic, Dr. A. Y. Ankara Oncology Training and Research Hospital, Ankara, Turkey
Niyazi Meriç
Affiliation:
1Institute of Nuclear Sciences, Ankara University, Ankara, Turkey;
*
Author for correspondence: Serdar Şahin, Department of Radiation Oncology, Dr. A. Y. Ankara Oncology Training and Research Hospital, 06200, Yenimahalle, Ankara, Turkey. Tel: +90 535 293 9664. E-mail: [email protected]

Abstract

Introduction:

In this study, the differences between calculated and measured dose values were then analysed to assess the performance, in terms of accuracy, of the tested treatment planning system (TPS) algorithms applied to calculate electron beam dose targeted and non-targeted the breast region.

Materials and methods:

The beryllium oxide (BeO) dosimeters placed on the female RANDO phantom were irradiated 12 MeV electron energy with medical linear accelerator and repeatedly read in the Risø thermoluminescence (TL)/optically stimulated luminescence (OSL) system via OSL method at least three times.

Results:

For electron treatment, one made quantitative comparisons of the dose distributions calculated by TPSs with those from the measurements by OSL at various points in the RANDO phantom.

The mean dose measured from the dosimeters placed on the female RANDO phantom target left breast region was 160 cGy and non-target right breast region was 1·2 cGy. Analysis of Generalised Gaussian Pencil Beam (GGPB) and Electron Monte Carlo (eMC) algorithms for determined region mean point dose values, respectively, 174 and 164 cGy. Two algorithms for non-targeted region calculated same point dose values of 0·2 cGy.

Conclusions:

The results of this study showed that BeO dosimeters can be used with OSL method in radiotherapy applications and it is a very important tool for the determination of targeted/non-targeted absorbed dose.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marks, LB, Ten Haken, RK, Martel, MK. Guest editor’s introduction to QUANTEC: a user’s guide. Int J Radiat Oncol Biol Phys. 2010; 76 (3Suppl): S1S2.CrossRefGoogle Scholar
Xu, XG, Bednarz, B, Paganetti, H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol. 2008; 53 (13): R193R241.CrossRefGoogle ScholarPubMed
Taylor, ML, Kron, T. Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy. J Med Phys. 2011; 36 (2): 5971.CrossRefGoogle Scholar
Gerbi, BJ, Antolak, JA, Deibel, FC, et al. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25. Med Phys. 2009; 36 (7): 32393279.CrossRefGoogle ScholarPubMed
Huizenga, H, Storchi, PR. The in-air scattering of clinical electron beams as produced by accelerators with scanning beams and diaphragm collimators. Phys Med Biol. 1987; 32 (8): 10111029.CrossRefGoogle ScholarPubMed
Pennington, EC, Jani, SK, Wen, B-C. Leakage radiation from electron applicators on a medical accelerator. Med Phys. 1988; 15 (5): 763765.CrossRefGoogle ScholarPubMed
Das, KR, Cramb, JA, Millar, RM, et al. Levels of leakage radiation from electron collimators of a linear accelerator. Med Phys. 1990; 17 (6): 10581063.Google ScholarPubMed
Perec, A, Kubo, H. Radiation leakage through electron applicators on Clinac-1800 accelerators. Med Phys. 1990; 17 (4): 715719.CrossRefGoogle ScholarPubMed
Kassaee, A, Altschuler, MD, Ayyalsomayajula, S, Bloch, P. Influence of cone design on the electron beam characteristics on clinical accelerators. Med Phys. 1994; 21 (11): 16711676.Google ScholarPubMed
Chow, JC, Grigorov, GN. Peripheral dose outside applicators in electron beams. Phys Med Biol. 2006; 51 (12): N231N240.CrossRefGoogle ScholarPubMed
Yeboah, C, Karotki, A, Hunt, D, Holly, R. Quantification and reduction of peripheral dose from leakage radiation on Siemens Primus accelerators in electron therapy mode. J Appl Clin Med Phys. 2010; 11 (3): 154172.CrossRefGoogle ScholarPubMed
Sommer, M, Jahn, A, Henniger, J. Beryllium oxide as optically stimulated luminescence dosimeter. Radiat Meas. 2008; 43 (2): 353356.CrossRefGoogle Scholar
Moeckel, D, Mueller, H, Pawelke, J, Sommer, M, Will, E, Enghardt, W. Quantification of β+ activity generated by hard photons by means of PET. Phys Med Biol. 2007; 52: 25152530.CrossRefGoogle Scholar
Şahin, S, Tanır, GA, Meriç, N, Aydınkarahaliloğlu, E. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications. App Radiat and Iso. 2015; 103: 3136.Google ScholarPubMed
Bulur, E, Göksu, HY. OSL from BeO ceramics: new observations from an old material. Radiat Meas. 1998; 29: 639650.CrossRefGoogle Scholar
Tochilin, E, Goldstein, N, Miller, WG. Beryllium oxide as a thermoluminescent dosimeter. Health Phys. 1969; 16 (1): 17.CrossRefGoogle ScholarPubMed
Busuoli, G, Lembo, L, Nanni, R, Sermenghi, I. Use of BeO in routine personnel dosimetry. Radiat Prot Dosim. 1983; 6 (1–4): 317320.CrossRefGoogle Scholar
Jahn, A, Sommer, M, Ullrich, W, Wickert, M, Henniger, J. The BeOmax system-Dosimetry using OSL of BeO for several applications. Radiat Meas. 2013; 56: 324327.CrossRefGoogle Scholar
Sommer, M, Henniger, J. Investigation of a BeO-based optically stimulated luminescence dosimeter. Radiat Prot Dosim. 2006; 119: 394397.CrossRefGoogle Scholar
Samuelssonyx, A, Hyödynmaaz, S, Johanssony, KA. Dose accuracy check of the 3D electron beam algorithm in a treatment planning system. Phys Med Biol. 1998; 43: 15291544.CrossRefGoogle Scholar
Ding, GX, Duggan, DM, Coffey, CW, Shokrani, P, Cygler, JE. First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning-new issues for clinical consideration. Phys Med Biol. 2006; 51 (11): 27812799.CrossRefGoogle Scholar
Popple, RA, Weinberg, R, Antolak, JA, et al. Comprehensive evaluation of a commercial macro Monte Carlo electron dose calculation implementation using a standard verification data set. Med Phys. 2006; 33 (6): 1540–1451.CrossRefGoogle ScholarPubMed
Turian, JV, Smith, BD, Bernard, DA, Griem, KL, Chu, JC. Monte Carlo calculations of output factors for clinically shaped electron fields. J Appl Clin Med Phys. 2004; 5 (2): 4263.CrossRefGoogle ScholarPubMed
Aubry, JF, Bouchard, H, Bessières, I, Lacroix, F. Validation of an electron Monte Carlo dose calculation algorithm in the presence of heterogeneities using EGSnrc and radiochromic film measurements. J Appl Clin Med Phys. 2011; 12 (4): 214.CrossRefGoogle ScholarPubMed
Zhang, A, Wen, N, Nurushev, T, Burmeister, J, Chetty, IJ. Comprehensive evaluation and clinical implementation of commercially available Monte Carlo dose calculation algorithm. J Appl Clin Med Phys. 2013; 14 (2): 127145.Google ScholarPubMed
Xu, Z, Walsh, SE, Telivala, TP, Meek, AG, Yang, G. Evaluation of the eclipse electron Monte Carlo dose calculation for small fields. J Appl Clin Med Phys. 2009; 10 (3): 7585.CrossRefGoogle ScholarPubMed
Bøtter-Jensen, L, Bulur, E, Duller, GAT, Murray, AS. Advances in luminescence instrument systems. Radiat Meas. 2000; 32: 523528.Google Scholar
Klein, EE, Hanley, J, Bayouth, J, Yin, FF, Simon, W. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009; 36: 41974212.CrossRefGoogle ScholarPubMed