Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T15:43:16.511Z Has data issue: false hasContentIssue false

Review on the feasibility of using PRESAGE® dosimeter in various radiotherapy techniques

Published online by Cambridge University Press:  16 March 2020

Qurat-ul-ain Shamsi*
Affiliation:
Physics Department, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
Saeed Ahmad Buzdar
Affiliation:
Physics Department, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
Shagufta Jabeen
Affiliation:
Bioloby Department, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
Khalid Iqbal
Affiliation:
Clinical and Radiation Oncology Department, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
*
Author for correspondence: Qurat-ul-ain Shamsi, Physics Department, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan. Tel: +923216827959. E-mail: [email protected]

Abstract

The emergence of advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT), brachytherapy, conformal radiotherapy, magnetic resonance-guided radiotherapy (MRgRT), stereotactic synchrotron radiotherapy (SSRT) and microbeam radiotherapy (MRT), has increased the importance of the verification of volumetric dose distribution. The verification of dose distribution is usually done by 2D films and 3D gel dosimeters, but PRESAGE® due to its affordability, reproducibility, precision, accuracy, unique dosimetric and physical properties is considered as an effective candidate in providing 3D dose data. PRESAGE® is insensitive to oxygen contamination, machinable and can be molded to a variety of shapes and sizes. It is absorbing rather than scattering light which facilitates high-accuracy readout by optical computed tomography (OP-CT). This review focuses on the feasibility of using PRESAGE® in various complicated radiotherapy techniques by comparing its measured doses with 2D films and treatment planning system (TPS) calculated doses.

Type
Literature Review
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Khezerloo, D, Nedaie, HA, Takavar, A et al. PRESAGE® as a solid 3D dosimeter: a review article. Radiat Phys Chem 2017; 141: 8897.CrossRefGoogle Scholar
Oldham, M. Methods and techniques for comprehensive 3D dosimetry, In: Godfrey, D, Das, S, Wolbars, A (eds). Advances in Medical Physics. Madison, WI: Medical Physics Pub Corp, 2014: 7081.Google Scholar
Juang, T, Newton, J, Niebanck, M, Benning, R, Adamovics, J, Oldham, M. Customising PRESAGE® for diverse applications. J Phys Conf Ser 2013; 444: 012029.CrossRefGoogle ScholarPubMed
Bedford, JL, Lee, YK, Wai, P, South, CP, Warrington, AP. Evaluation of the Delta4 phantom for IMRT and VMAT verification. Phys Med Biol 2009; 54 (9): N167N176.CrossRefGoogle ScholarPubMed
Clift, C, Thomas, A, Adamovics, JA, Chang, Z, Das, IJ, Oldham, M. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/optical-CT 3D dosimetry system. Phys Med Biol 2010; 55: 12791293.CrossRefGoogle Scholar
Newton, J, Thomas, A, Ibbott, G, Oldham, M. Preliminary commissioning investigations with the DMOS-RPC optical-CT scanner. J Phys Conf Ser 2010; 250 (1): 012078.CrossRefGoogle ScholarPubMed
Adamovics, J, Maryanski, MJ. Characterization of PRESAGE: a new 3-D radiochromic solid polymer dosimeter for ionizing radiation. Radiat Prot Dosimetry 2006; 120 (1–4): 107112.CrossRefGoogle Scholar
Alqathami, M, Blencowe, A, Ibbott, G, An investigation into the potential influence of oxygen on the efficiency of the PRESAGE® dosimeter. IC3DDose 2014 – 8th International Conference 3D Radiation Dosimetry 2015: 3–6.Google Scholar
Bache, S, Juang, T, Adamovics, J et al. An investigation of the feasibility of rodentmorphic 3D dosimeters for verification of precision micro-irradiator treatment. Med Phys 2013; 40: 490.CrossRefGoogle Scholar
Farhood, B, Khezerloo, D, Zadeh, TM, Nedaie, HA, Hamrahi, D, Khezerloo, N. Evaluation of the effect of temperature variation on response of PRESAGE® dosimeter. J Caner Res 2017; 13: 118121.Google ScholarPubMed
Guo, P, Adamovics, J, Oldham, M. A practical three-dimensional dosimetry system for radiation therapy. Med Phys 2006; 33: 39623972.CrossRefGoogle ScholarPubMed
Guo, P, Adamovics, J, Oldham, M. Characterization of a new radiochromic three-dimensional dosimeter. Med Phys 2006; 33: 13381345.CrossRefGoogle ScholarPubMed
Sakhalkar, HS, Adamovics, J, Ibbott, G, Oldham, M. A comprehensive evaluation of the PRESAGE®/Optical-CT 3D dosimetry system. Med Phys 2009; 36: 7182.CrossRefGoogle Scholar
Wang, Z, Thomas, A, Newton, J, Ibbott, G, Deasy, J and Oldham, M. Dose verification of stereotactic radiosurgery treatment for trigeminal neuralgia with Presage® 3D dosimetry system. J Phys Conf Ser 2010; 250(1): 012058.CrossRefGoogle Scholar
Yates, ES, Balling, P, Petersen, JB et al. Characterization of the optical properties and stability of Presage following irradiation with photons and carbon ions. Acta Oncol 2011; 50: 829834. pmid:21767181.CrossRefGoogle Scholar
Juang, T, Newton, J, Niebanck, M, Benning, R, Adamovics, J, Oldham, M. Customising PRESAGE® for diverse applications. J Phys Conf Ser 2013; 444: 012029. pmid:24567739.CrossRefGoogle ScholarPubMed
Jackson, J, Juang, T, Adamovics, J, Oldham, M. SU-E-T-53: an investigation of the dosimetric characteristics of a novel radiochromic 3D dosimeter. Med Phys 2013; 40: 215.CrossRefGoogle Scholar
Casanova Borca, V, Pasquino, M, Russo, G et al. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J Appl Clin Med Phys 2013; 14 (2): 158171.CrossRefGoogle ScholarPubMed
Devic, S. Radiochromic film dosimetry: past, present, and future. Phys Med 2011; 27: 122134.CrossRefGoogle ScholarPubMed
Brown, S, Bailey, DL, Willowson, K, Baldock, C. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isotopes 2008; 66: 12061212.CrossRefGoogle ScholarPubMed
Newton, J, Thomas, A, Ibbott, G, Oldham, M. Preliminary commissioning investigations with the DMOS-RPC optical-CT Scanner. J Phys Conf Ser 2010; 250 (1): 012078p.CrossRefGoogle ScholarPubMed
Devic, S, Seuntjens, J, Sham, E et al. Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 2005; 32 (7): 22452253.CrossRefGoogle ScholarPubMed
Iqbal, K, Gifford, KA, Ibbott, G, Grant, LR, Buzdar, SA. Comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film with a commercial radiation treatment planning system for breast IMRT: a feasibility study. J Appl Clin Med Phys 2014; 15: 363374.CrossRefGoogle ScholarPubMed
Newton, J, Thomas, A, Ibbott, G, Oldham, M. Preliminary commissioning investigations with the DMOS-RPC optical-CT Scanner. J Phys Conf Ser 2010; 250 (1): 012078p.CrossRefGoogle ScholarPubMed
Desroches, J, Bouchard, H, Lacroix, F. Potential errors in optical density measurements due to scanning side in EBT and EBT2 Gafchromic film dosimetry. Med Phys 2010; 37 (4): 15651570.CrossRefGoogle ScholarPubMed
Andres, C, Del Castillo, A, Tortosa, R, Alonso, D, Barquero, R. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys 2010; 37 (12): 62716278.CrossRefGoogle ScholarPubMed
Arjomandy, B, Tailor, R, Anand, A et al. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron and proton beam energies. Med Phys 2010; 37 (5): 19421947.CrossRefGoogle Scholar
Butson, MJ, Cheung, T, Yu, PKN, Alnawaf, H. Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas Phys Eng Sci Med 2009; 32 (4): 196202.CrossRefGoogle ScholarPubMed
Devic, S, Aldelaijan, S, Mohammed, H et al. Absorption spectra time evolution of EBT-2 model GAFCHROMIC film. Med Phys 2010; 37 (5): 22072214.CrossRefGoogle ScholarPubMed
Devic, S, Seuntjens, J, Sham, E et al. Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys 2005; 32 (7): 22452253.CrossRefGoogle ScholarPubMed
Zhao, L, Newton, J, Oldham, M, Das, IJ, Cheng, CW, Adamovics, J. Feasibility of PRESAGE® for relative 3D dosimetry of small proton fields. Phys Med Biol 2012; 57 (22): 431443.CrossRefGoogle ScholarPubMed
Al-Nowais, S, Doran, S, Kacperek, A, Krstajic, N, Adamovics, J, Bradley, D. A preliminary analysis of LET effects in the dosimetry of proton beams using PRESAGE and optical CT. Appl Radiat Isotopes 2008; 67 (3): 415418.CrossRefGoogle ScholarPubMed
Abdul Rahman, AT, Bräuer-Krisch, E, Brochard, T et al. Sophisticated test objects for the quality assurance of optical computed tomography scanners. Phys Med Biol 2011; 56 (14): 41774199. doi: 10.1088/0031-9155/56/14/001 CrossRefGoogle ScholarPubMed
Aland, T, Karin, T, Kenny, J. Evaluation of a GAFCHROMIC EBT2 film dosimetry for radiotherapy quality assurance. Australas Phys Eng Sci Med 2011; 34: 251260.CrossRefGoogle ScholarPubMed
MacDougall, ND, Miquel, ME, Keevil, SF. Effects of phantom volume and shape on the accuracy on the accurancy of MRI BANG gel dosimetry using BANG3. Br J Radiol 2008; 81: 4650.CrossRefGoogle Scholar
Iqbal, K., Ibbott, G., Lafratta, R., Gifford, K., Akram, M., Buzdar, S. Dosimetric feasibility of an anthropomorphic three-dimensional PRESAGE® dosimeter for verification of single entry hybrid catheter accelerated partial breast brachytherapy. J Radiother Pract 2018; 17 (4): 403410.CrossRefGoogle Scholar
Iqbal, K, Ibbott, G, Grant, RL, Gifford, KA, Buzdar, SA. Dosimetric characterization of anthropomorphic PRESAGE® dosimeter and EBT2 film for partial breast radiotherapy. J Radiother Pract 2017; 17: 96103.CrossRefGoogle Scholar
Choi, GW. Measurement of the electron return effect using PRESAGE dosimeter. 2016. UT GSBS Dissertations and Theses. 690. The University of Texas, Graduate School of Biomedical Sciences, Houston.Google Scholar
Low, DA, Harms, WB, Mutic, S, Purdy, JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998; 25: 656661. PubMed PMID: 9608475.CrossRefGoogle ScholarPubMed
Oldham, M., Sakhalkar, H, Guo, P, Adamovics, J. An investigation of the accuracy of an IMRT dose distribution using two- and three-dimensional dosimetry techniques. Med Phys 2008; 35: 20722080.CrossRefGoogle ScholarPubMed
Guo, P, Adamovics, J, Oldham, M. A practical three-dimensional dosimetry system for radiation therapy. Med Phys 2006; 33: 39623972.CrossRefGoogle ScholarPubMed
Oldham, M., Sakhalkar, H, Guo, P, Adamovics, J. An investigation of the accuracy of an IMRT dose distribution using two- and three-dimensional dosimetry techniques. Med Phys 2008; 35: 20722080.CrossRefGoogle ScholarPubMed
Sakhalkar, HS, Adamovics, J, Ibbott, G, Oldham, M. A comprehensive evaluation of the PRESAGE®/optical-CT 3D dosimetry system. Med Phys 2009; 36: 7182.CrossRefGoogle Scholar
Thomas, A, Newton, J, Adamovics, J, Oldham, M. Commissioning and benchmarking a 3D dosimetry system for clinical use. Med Phys 2011; 38: 48464857.CrossRefGoogle ScholarPubMed
Moutsatsos, A, Pantelis, E., Antypas, C. et al. On the use of presage detectors for the dosimetry of helical tomotherapy small fields. Phys Medica 2016; 32 (Suppl 3): 332.CrossRefGoogle Scholar
Pierquet, M, Craciunescu, O, Steffey, B, Song, H, Oldham, M. On the feasibility of verification of 3D dosimetry near Brachytherapy sources using PRESAGE®/Optical-CTIC3DDose: The 6th international conference on 3D radiation dosimetry IOP publishing. J Phys Conf Ser 2010; 250: 012091.CrossRefGoogle Scholar
Doran, SJ, Yatigammana, DN. Eliminating the need for refractive index matching in optical CT scanners for radiotherapy dosimetry: I. Concept and simulations. Phys Med Biol 2012; 57: 665683.CrossRefGoogle ScholarPubMed
Oldham, M, Sakhalkar, H, Guo, P, Adamovics, J. An investigation of the accuracy of an IMRT dose distribution using two- and three-dimensional dosimetry techniques. Med Phys 2008; 35: 20722080.CrossRefGoogle ScholarPubMed
Thomas, A, Newton, J, Adamovics, J, Oldham, M. Commissioning and benchmarking a 3D dosimetry system for clinical use. Med Phys 2011; 38: 48464857.CrossRefGoogle ScholarPubMed
Raaijmakers, AJ, Raaymakers, BW, Lagendijk, JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol 2005; 50: 13631376.CrossRefGoogle Scholar
Raaijmakers, AJ. MR-Guided Radiotherapy: Magnetic Field Dose Effects. Netherlands: Utrecht University, 2008.Google Scholar
Meijsing, I, Raaymakers, BW, Raaijmakers, AJ et al. Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber. Phys Med Biol 2009; 54: 29933002.CrossRefGoogle ScholarPubMed
Mathis, M, Sawakuchi, G, Flint, D et al. Effects of a strong magnetic field on selected radiation dosimeters (TLD, OSLD, EBT3 film, PRESAGE). Congress 2014 CSM, Poster No. 0715. doi: 10.1594/ranzcr2014/R-0175CrossRefGoogle Scholar
ICRU. Determination of Absorbed Dose in a Patient Irradiated by Beams 230of X- or Gamma-Rays in Radiotherapy Procedures. Bethesda, MD:International-Commission on Radiation Units and Measurement, 1976; 232ICRU Rep. 24.Google Scholar
Johansson, KA, Hariot, JC, Van Dam, J, Lepinoy, D, Setenac, I, Sernbo, G. Quality assurance control in the EORTC cooperative group of 235radiotherapy. Dosimetric intercomposition. Radiather Oncol 1986; 7: 269279.CrossRefGoogle Scholar
Shamsi, Q, Buzdar, SA, Atiq, A, Atiq, M, Altaf, S, Iqbal, K. Dosimetric determination of tissue maximum ratios in small fields. J Radiother Pract. April 2018. doi: 10.1017/S1460396918000055 CrossRefGoogle Scholar
Zhao, L, Newton, J, Oldham, M, Das, I, Cheng, C, Adamovics, J. Feasibility of PRESAGE® for relative 3D dosimetry of small proton fields. Phys Med Biol 2012; 57 (22): N431N443.CrossRefGoogle ScholarPubMed
Carrol, M, Ibbott, G, Gillin, M, Adamovics, J. Investigation of 3D dosimetry for proton therapy using PRESAGE. Med Phys 2013; 40 (6): 220.CrossRefGoogle Scholar
Alqathami, M, Blencowe, A, Geso, M, Ibbott, G. Characterization of Novel PRESAGE® dosimeters for megavoltage and kilovoltage X-ray beam dosimetry. Radiat Meas 2015; 74: 1219.CrossRefGoogle Scholar
Gorjiara, T, Hill, R, Kuncic, Z et al. Investigation of radiological properties and water equivalency of PRESAGE®dosimeters. Med Phys 2011; 38: 22652274.CrossRefGoogle Scholar
Brady, SL, Brown, WD, Clift, CG, Yoo, S, Oldham, M. Investigation into the feasibility of using PRESAGE®/optical-CT dosimetry for the verification of gating treatments. Phys Med Biol 2010; 55: 21872201.CrossRefGoogle ScholarPubMed
Jackson, J, Juang, T, Adamovics, J, Oldham, M. An investigation of PRESAGE®3D dosimetry for IMRT and VMAT radiation therapy treatment verification. Phys Med Biol 2015; 60: 22172230.CrossRefGoogle ScholarPubMed
Gagliardi, FM, Liam, D, Poole, CM, Franich, RD, Moshi, G. Water equivalent PRESAGE® for synchrotron radiation therapy dosimetry. Med Phys 2018; 45 (3): 12551265.CrossRefGoogle ScholarPubMed
Alqathami, M, Blencowe, A, Geso, M, Ibbott, G. Characterization of Novel PRESAGE® dosimeters for megavoltage and kilovoltage X-ray beam dosimetry. Radiat Meas 2015; 74: 1219.CrossRefGoogle Scholar