Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:57:25.831Z Has data issue: false hasContentIssue false

Dosimetric comparison of volumetric-modulated arc therapy and helical tomotherapy for adjuvant treatment of bilateral breast cancer

Published online by Cambridge University Press:  06 October 2020

Reena Phurailatpam*
Affiliation:
Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
Tabassum Wadasadawala
Affiliation:
Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
Kamalnayan Chauhan
Affiliation:
Department of Radiation Oncology, Hinduja Hospital, Mumbai, India
Subhajit Panda
Affiliation:
Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
Rajiv Sarin
Affiliation:
Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
*
Author for correspondence: R. Phurailatpam, Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India. E-mail: [email protected]

Abstract

Purpose:

Dosimetric comparison between volumetric-modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of bilateral breast cancer (BBC).

Materials and methods:

Ten patients treated on HT were selected retrospectively. Dose prescription was 50 Gy in 25 fractions to breast/chest wall and supraclavicular fossa (SCF) while tumour bed was simultaneously boosted to 61 Gy in 25 fractions. VMAT plans were made with four mono-isocentric partial arcs. The monitoring unit (MU) and treatment time were used to quantify the treatment efficiency. Target volumes were compared for homogeneity index (HI), conformity index (CI) while organs at risk (OARs) were compared for relevant dose volumes and integral doses (IDs).

Result:

For targets, no significant difference is observed between VMAT and HT in CI but VMAT could give better HI. The mean lung dose, V20 and V5 is 10·6 Gy versus 8·4 Gy (p-value 0·03), 12% versus 11·5% (p-value 0·5) and 78·1% versus 43·4% (p-value 0·005), respectively. The mean heart dose, V30 and V5 is 4·9 Gy versus 4·7 Gy (p-value 0·88), 0·5% versus 1·5% (p-value 0·18) and 26·2% versus 22·8% (p-value 0·4). Integral dose (ID) for the whole body and heart are comparable: 289 Gy kg versus 299 Gy kg (p-value 0·24) and 2·9 Gy kg versus 2·8 Gy kg (p-value 0·80). ID for lungs was significantly higher with VMAT: 7·9 Gy kg versus 6·3 Gy kg (p-value 0·03). There is a 53% reduction in treatment time and 78% in MU with VMAT against HT.

Conclusion:

VMAT can generate clinically acceptable plans comparable to HT for BBC. HT shows better control over low dose spillage in lungs compared to VMAT thereby increasing ID to lungs. VMAT shows better homogeneity and efficient treatment delivery than HT.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seppälä, J, Heikkilä, J, Myllyoja, K, Koskela, K. Volumetric modulated arc therapy for synchronous bilateral whole breast irradiation – a case study. Rep Pract Oncol Radiother 2015; 20 (5): 398402. https://doi.org/10.1016/j.rpor.2015.05.011 CrossRefGoogle ScholarPubMed
Wadasadawala, T, Visariya, B, Sarin, R, Upreti, RR, Paul, S, Phurailatpam, R. Use of tomotherapy in treatment of synchronous bilateral breast cancer: dosimetric comparison study. Br J Radiol 2015; 88 (1048): 20140612. https://doi.org/10.1259/bjr.20140612 CrossRefGoogle ScholarPubMed
Fiorentino, A, Mazzola, R, Naccarato, S et al. Synchronous bilateral breast cancer irradiation: clinical and dosimetrical issues using volumetric modulated arc therapy and simultaneous integrated boost. Radiol Med 2017; 122: 464471. https://doi.org/10.1007/s11547-017-0741-y CrossRefGoogle ScholarPubMed
Kim, SJ, Lee, MJ, Youn, SM. Radiation therapy of synchronous bilateral breast carcinoma (SBBC) using multiple techniques. Med Dosim 2018; 43: 5568. https://doi.org/10.1016/j.meddos.2017.08.003 CrossRefGoogle ScholarPubMed
Wadasadawala, T, Jain, S, Paul, S, et al. First clinical report of helical tomotherapy with simultaneous integrated boost for synchronous bilateral breast cancer. Br J Radiol 2017; 90 (1077): 20170152. https://doi.org/10.1259/bjr.20170152 CrossRefGoogle ScholarPubMed
Lauche, O, Kirova, YM, Fenoglietto, P et al. Helical tomotherapy and volumetric modulated arc therapy: New therapeutic arms in the breast cancer radiotherapy. World J Radiol 2016; 8: 735742. https://doi.org/10.4329/wjr.v8.i8.735 CrossRefGoogle ScholarPubMed
Nicolini, G, Clivio, A, Fogliata, A, Vanetti, E, Cozzi, L. Simultaneous integrated boost radiotherapy for bilateral breast: a treatment planning and dosimetric comparison for volumetric modulated arc and fixed field intensity modulated therapy. Radiat Oncol 2009; 4: 27.127.12. https://doi.org/10.1186/1748-717X-4-27 CrossRefGoogle ScholarPubMed
Sun, T, Lin, X, Tong, Y, et al. Heart and cardiac substructure dose sparing in synchronous bilateral breast radiotherapy: a dosimetric study of proton and photon radiation therapy. Front Oncol 2020; 9: 1456. https://doi.org/10.3389/fonc.2019.01456 CrossRefGoogle ScholarPubMed
Cheng, H-W, Chang, C-C, Shiau, A-C, Wang, M-H, Tsai, J-T. Dosimetric comparison of helical tomotherapy, volumetric-modulated arc therapy, intensity-modulated radiotherapy, and field-in-field technique for synchronous bilateral breast cancer. Med Dosim 2020; 7: 19. https://doi.org/10.1016/j.meddos.2020.01.006 Google Scholar
Zedef, D, Şilem, E, Oguzhan, A, Fikri, K, Ayse, KD, Deniz, AN. Comparison of VMAT, field in field, inverse IMRT, and helical tomotherapy planning in bilateral synchronous breast cancer: a case study. Turk J Oncol 2019; 35 (1): 9398. https://doi.org/10.5505/tjo.2019.632 Google Scholar
Offersen, BV, Boersma, LJ, Kirkove, C, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol 2015; 114 (1): 310. https://doi.org/10.1016/j.radonc.2014.11.030 CrossRefGoogle ScholarPubMed
Mackie, TR, Holmes, T, Swerdloff, S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993; 20 (6): 17091719. https://doi.org/10.1118/1.596958 CrossRefGoogle ScholarPubMed
Cozzi, L, Dinshaw, KA, Shrivastava, SK, et al. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 2008; 89 (2): 180191. https://doi.org/10.1016/j.radonc.2008.06.013 CrossRefGoogle ScholarPubMed
Fogliata, A, Clivio, A, Nicolini, G, Vanetti, E, Cozzi, L. Intensity modulation with photons for benign intracranial tumours: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol 2008; 89 (3): 254262. https://doi.org/10.1016/j.radonc.2008.07.021 CrossRefGoogle ScholarPubMed
Fogliata, A, Yartsev, S, Nicolini, G, et al. On the performances of Intensity Modulated Protons, RapidArc and Helical Tomotherapy for selected paediatric cases. Radiat Oncol 2009; 4 (1): 2.12.19. https://doi.org/10.1186/1748-717x-4-2 CrossRefGoogle ScholarPubMed
Wu, Q, Mohan, R, Morris, M, Lauve, A, Schmidt-Ullrich, R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys 2003; 56: 573585. https://doi.org/10.1016/s0360-3016(02)04617-5 CrossRefGoogle ScholarPubMed
Shaw, E, Scott, C, Souhami, L, et al. Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol 90-05. Int J Radiat Oncol Biol Phys 1996, 34 (3): 647654. https://doi.org/10.1016/0360-3016(95)02106-x CrossRefGoogle ScholarPubMed
D’Souza, WD, Rosen, II. Nontumor integral dose variation in conventional radiotherapy treatment planning. Med Phys 2003; 30 (8): 20652071. https://doi.org/10.1118/1.1591991 CrossRefGoogle ScholarPubMed
Valli, M, Cekani, E, Cima, S, Richetti, A. Special issue on radiation therapy for breast cancer – radiation side effects. Sci J Nucl Med Radiat Ther 2017; 1 (1): 1631 Google Scholar
Lee, TF, Chao, PJ, Chang, L, Ting, HM, Huang, YJ. Developing multivariable normal tissue complication probability model to predict the incidence of symptomatic radiation pneumonitis among breast cancer patients. PLOS One 2015; 10 (7): e0131736. https://doi.org/10.1371/journal.pone.0131736 CrossRefGoogle ScholarPubMed
Darby, SC, Cutter, DJ, Boerma, M, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 2010; 76 (3): 656665. https://doi.org/10.1016/j.ijrobp.2009.09.064 CrossRefGoogle ScholarPubMed
Choi, YW, Munden, RF, Erasmus, JJ, et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics 2004; 24 (4): 985997. https://doi.org/10.1148/rg.244035160 CrossRefGoogle ScholarPubMed
Sharma, DS, Gupta, T, Jalali, R, Master, Z, Phurailatpam, RD, Sarin, R. High-precision radiotherapy for craniospinal irradiation: evaluation of three-dimensional conformal radiotherapy, intensity-modulated radiation therapy and helical TomoTherapy. Br J Radiol 2009; 82 (984): 10001009. https://doi.org/10.1259/bjr/13776022 CrossRefGoogle ScholarPubMed
Aoyama, H, Westerly, DC, Mackie, TR, et al. Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 2006; 64 (3): 962967. https://doi.org/10.1016/j.ijrobp.2005.11.005 CrossRefGoogle ScholarPubMed
Yang, R, Xu, S, Jiang, W, Xie, C, Wang, J. Integral dose in three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and helical tomotherapy. Clin Oncol (R Coll Radiol) 2009; 21 (9): 706712. https://doi.org/10.1016/j.clon.2009.08.002 CrossRefGoogle ScholarPubMed
Patel, S, Drodge, S, Jacques, A, Warkentin, H, Powell, K, Chafe, S. A comparative planning analysis and integral dose of volumetric modulated arc therapy, helical tomotherapy, and three-dimensional conformal craniospinal irradiation for pediatric medulloblastoma. J Med Imaging Radiat Sci 2015; 46 (2): 134140. https://doi.org/10.1016/j.jmir.2014.11.003 CrossRefGoogle ScholarPubMed
Pasquier, D, Cavillon, F, Lacornerie, T, Touzeau, C, Tresch, E, Lartigau, E. A dosimetric comparison of tomotherapy and volumetric modulated arc therapy in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Int J Radiat Oncol Biol Phys 2013; 85 (2): 549554. https://doi.org/10.1016/j.ijrobp.2012.03.046 CrossRefGoogle ScholarPubMed
Gleeson, I, Rose, C, Spurrell, J. Dosimetric comparison of helical tomotherapy and VMAT for anal cancer: a single institutional experience. Med Dosim 2019; 44 (4): e32e38. https://doi.org/10.1016/j.meddos.2018.12.004 CrossRefGoogle ScholarPubMed
Nichols, GP, Fontenot, JD, Gibbons, JP, Sanders, ME. Evaluation of volumetric modulated arc therapy for postmastectomy treatment. Radiat Oncol 2014; 9: 66.166.8. https://doi.org/10.1186/1748-717X-9-66 CrossRefGoogle ScholarPubMed
Tsai, CL, Wu, JK, Chao, HL, Tsai, YC, Cheng, JC. Treatment and dosimetric advantages between VMAT, IMRT, and helical tomotherapy in prostate cancer. Med Dosim 2011; 36 (3): 264271. https://doi.org/10.1016/j.meddos.2010.05.001 CrossRefGoogle ScholarPubMed
Kinhikar, RA, Pawar, AB, Mahantshetty, U, Murthy, V, Dheshpande, DD, Shrivastava, SK. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: a dosimetric comparison. J Cancer Res Ther 2014; 10 (3): 575582. https://doi.org/10.4103/0973-1482.138200 Google ScholarPubMed
Cozzi, L, Lohr, F, Fogliata, A et al. Critical appraisal of the role of volumetric modulated arc therapy in the radiation therapy management of breast cancer. Radiat Oncol 2017: 12 (1). https://doi.org/10.1186/s13014-017-0935-4 CrossRefGoogle ScholarPubMed
Kaidar-Person, O, Kostich, M, Zagar, TM et al. Helical tomotherapy for bilateral breast cancer: clinical experience. Breast 2016; 28: 7983. https://doi.org/10.1016/j.breast.2016.05.004 CrossRefGoogle ScholarPubMed
Mani, KR, Basu, S, Bhuiyan, MA et al. Three dimensional conformal radiotherapy for synchronous bilateral breast irradiation using a mono iso-center technique. Polish J Med Phys Eng 2017; 23 (2): 1519. https://doi.org/10.1515/pjmpe-2017-0004 CrossRefGoogle Scholar
Franco, P, Migliaccio, F, Torielli, P et al. Bilateral breast radiation delivered with static angle tomotherapy (TomoDirect): clinical feasibility and dosimetric results of a single patient. Tumori J 2015; 101 (1): 48. https://doi.org/10.5301/tj.5000264 CrossRefGoogle ScholarPubMed
Bruzzaniti, V, Abate, A, Pinnarò, P, et al., Dosimetric and clinical advantages of deep inspiration breath-hold (DIBH) during radiotherapy of breast cancer. J Exp Clin Cancer Res 2013; 32 (1): 88.188.7. https://doi.org/10.1186/1756-9966-32-88 CrossRefGoogle ScholarPubMed
Bergom, C, Currey, A, Desai, N, Tai, A, Strauss, JB. Deep inspiration breath hold: techniques and advantages for cardiac sparing during breast cancer irradiation. Front Oncol 2018; 8: 87.187.10. https://doi.org/10.3389/fonc.2018.00087 CrossRefGoogle ScholarPubMed
Hong, JC, Rahimy, E, Gross, CP, et al., Radiation dose and cardiac risk in breast cancer treatment: an analysis of modern radiation therapy including community settings. Pract Radiat Oncol 2018; 8 (3): e79e86. https://doi.org/10.1016/j.prro.2017.07.005 CrossRefGoogle ScholarPubMed
Dumane, VA, Saksornchai, K, Zhou, Y, Hong, L, Powell, S, Ho, AY. Reduction in low-dose to normal tissue with the addition of deep inspiration breath hold (DIBH) to volumetric modulated arc therapy (VMAT) in breast cancer patients with implant reconstruction receiving regional nodal irradiation. Radiat Oncol 2018; 13 (1): 187.1187.7. https://doi.org/10.1186/s13014-018-1132-9 CrossRefGoogle ScholarPubMed
Gaudino, D, Cima, S, Frapolli, M et al. Volumetric modulated arc therapy applied to synchronous bilateral breast cancer radiotherapy: dosimetric study on deep inspiration breath hold versus free breathing set up. Biomed Phys Eng Exp 2018; 4 (4): 045007.1045007.7. https://doi.org/10.1088/2057-1976/aac19b Google Scholar
Cilla, S, Ianiro, A, Romano, C et al. Template-based automation of treatment planning in advanced radiotherapy: a comprehensive dosimetric and clinical evaluation. Sci Rep 10 (2020) 423. https://doi.org/10.1038/s41598-019-56966-y CrossRefGoogle ScholarPubMed