Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:20:28.916Z Has data issue: false hasContentIssue false

Dosimetric comparison between intensity-modulated radiotherapy and volumetric-modulated arc therapy in hippocampus sparing in brain metastasis treated by whole-brain irradiation and simultaneous integrated boost

Published online by Cambridge University Press:  24 June 2019

Ehab Saad*
Affiliation:
Department of Clinical Oncology, and Nuclear Medicine, Cairo University, Egypt Department of Radiation Oncology, Dar Al Fouad Hospital, Egypt
Khaled Elshahat
Affiliation:
Department of Radiation Oncology, Dar Al Fouad Hospital, Egypt Department of Clinical Oncology, Azhar University, Egypt
Hussein Metwally
Affiliation:
Department of Radiation Oncology, Dar Al Fouad Hospital, Egypt Department of Clinical Oncology, Fayoum University, Egypt
*
Author for correspondence: Ehab Saad, Kasr Al Ainy Hospital, Cairo, Egypt. Tel: 00201143650739. Fax: 002023653360. E-mail: [email protected]

Abstract

Background:

While treating brain metastasis with whole-brain radiotherapy incorporating a simultaneous integrated boost (WBRT-SIB), the risk of hippocampus injury is high. The aim of this study is to compare dosimetrically between intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in sparing of hippocampus and organs at risk (OARs) and planning target volume (PTV) coverage.

Methods:

In total, 16 patients presenting with more than one brain metastases were previously treated and then retrospectively planned using VMAT and IMRT techniques. For each patient, a dual-arc VMAT and another IMRT (five beams) plans were created. For both techniques, 30 Gy in 10 fractions was prescribed to the whole brain (WB) minus the hippocampi and 45 Gy in 10 fractions to the tumour with 0·5 cm margin. Dose–volume histogram (DVH), conformity index (CI) and homogeneity index (HI) of PTV, hippocampus mean and maximum dose and other OARs for both techniques were calculated and compared.

Results:

A statistically significant advantage was found in WB-PTV CI and HI with VMAT, compared to IMRT. There were lower hippocampus mean and maximum doses in VMAT than IMRT. The maximum hippocampus dose ranged between 15·5 and 19·2 Gy and between 18·4 and 20·6 Gy in VMAT and IMRT, respectively. The mean dose of the hippocampus ranged between 11·5 and 17·7 Gy and between 13·2 and 18·3 Gy in VMAT and IMRT, respectively.

Conclusion:

Using WBRT-SIB technique, VMAT showed better PTV coverage with less mean and maximum doses to the hippocampus than IMRT. Clinical randomised studies are needed to confirm safety and clinical benefit of WBRT-SIB.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This study was done in the Department of Radiation Oncology, Dar Al Fouad Hospital, 6th October, Cairo, Egypt.

No source of funding is needed in this study.

References

Siegel, R, Ma, J, Zou, Z, et al. Cancer statistics, 2014 - Siegel - 2014 - CA: A Cancer Journal for Clinicians - Wiley Online Library. A Cancer Journal for Clinicians. 2014; 65 (1): 529.CrossRefGoogle Scholar
Koay, E, Sulman, EP. Management of brain metastasis: past lessons, modern management, and future considerations. Curr Oncol Rep. 2012; 14 (1):7078. DOI: 10.1007/s11912-011-0205-9.CrossRefGoogle ScholarPubMed
Maclean, J, Fersht, N, Singhera, M, et al. Multi-disciplinary management for patients with oligometastases to the brain: results of a 5 year cohort study. Radiat Oncol. 2013; 8: 156. DOI: 10.1186/1748-717X-8-156.CrossRefGoogle ScholarPubMed
Aoyama, H, Shirato, H, Tago, M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. J Am Med Assoc. 2006; 295 (21): 24832491. DOI: 10.1001/jama.295.21.2483.CrossRefGoogle ScholarPubMed
Krause, M, Yaromina, A, Eicheler, W, et al. Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res. 2011; 17 (23): 72247229. DOI: 10.1158/1078-0432.CCR-10-2639.CrossRefGoogle ScholarPubMed
Wilson, GD, Saunders, MI, Dische, S, et al. Pre-treatment proliferation and the outcome of conventional and accelerated radiotherapy. Eur J Cancer. 2006; 42(3): 363371. DOI: 10.1016/j.ejca.2005.10.022.CrossRefGoogle ScholarPubMed
Prokic, V, Wiedenmann, N, Fels, F, et al. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys. 2013; 85(1): 264270. DOI: 10.1016/j.ijrobp.2012.02.036.CrossRefGoogle Scholar
Hsu, F, Carolan, H, Nichol, A, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1-3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2010; 76 (5): 14801485. DOI: 10.1016/j.ijrobp.2009.03.032.CrossRefGoogle ScholarPubMed
Merchant, TE, Pollack, IF, Loeffler, JS. Brain tumors across the age spectrum: biology, therapy, and late effects. Semin Radiat Oncol. 2010; 20 (1): 5866. DOI: 10.1016/j.semradonc.2009.09.005.CrossRefGoogle ScholarPubMed
Kim, KS, Seo, S-J, Lee, J, et al. Inclined head position improves dose distribution during hippocampal-sparing whole brain radiotherapy using VMAT. Strahlenther Onkol. 2016; 192 (7): 473480. DOI: 10.1007/s00066-016-0973-0.CrossRefGoogle ScholarPubMed
Scoville, WB, Milner, B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957; 20 (1): 1121. DOI: 10.1136/jnnp.20.1.11.CrossRefGoogle ScholarPubMed
Padovani, L, André, N, Constine, LS, et al. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat Rev Neurol. 2012; 8 (10): 578588. DOI: 10.1038/nrneurol.2012.182.CrossRefGoogle ScholarPubMed
Wagner, D, Christiansen, H, Wolff, H, et al. Radiotherapy of malignant gliomas: comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiother Oncol. 2009; 93 (3): 593596. DOI: 10.1016/j.radonc.2009.10.002.CrossRefGoogle Scholar
Chen, YD, Feng, J, Fang, T, et al. Effect of intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy on clinical outcomes in patients with glioblastoma multiforme. Chin Med J (Engl). 2013; 126 (12): 23202324. DOI: 10.3760/cma.j.issn.0366-6999.20130218.Google ScholarPubMed
Kazda, T, Jancalek, R, Pospisil, P, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014; 9: 139. DOI: 10.1186/1748-717X-9-139.CrossRefGoogle ScholarPubMed
Teoh, M, Clark, CH, Wood, K, et al. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011; 84 (1007): 967996. DOI: 10.1259/bjr/22373346.CrossRefGoogle ScholarPubMed
Gondi, V, Pugh, SL, Tome, WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014; 32 (34): 38103816. DOI: 10.1200/JCO.2014.57.2909.CrossRefGoogle ScholarPubMed
Shi, L, Molina, DP, Robbins, ME, et al. Hippocampal neuron number is unchanged 1 year after fractionated whole-brain irradiation at middle age. Int J Radiat Oncol Biol Phys. 2008; 71 (2): 526532. DOI: 10.1016/j.ijrobp.2008.02.015.CrossRefGoogle ScholarPubMed
Lee, K, Lenards, N, Holson, J. Whole-brain hippocampal sparing radiation therapy: volume-modulated arc therapy vs intensity-modulated radiation therapy case study. Med Dosim. 2016; 41 (1): 1521. DOI: 10.1016/j.meddos.2015.06.003.CrossRefGoogle ScholarPubMed
Pokhrel, D, Sood, S, McClinton, C, et al. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy. Med Dosim. 2016; 41 (4): 315322. DOI: 10.1016/j.meddos.2016.08.001.CrossRefGoogle ScholarPubMed
Gutiérrez, AN, Westerly, DC, Tomé, WA, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys. 2007; 69 (2): 589597. DOI: 10.1016/j.ijrobp.2007.05.038.CrossRefGoogle ScholarPubMed
Kim, KH, Cho, BC, Lee, CG, et al. Hippocampus-Sparing whole-brain radiotherapy and simultaneous integrated boost for multiple brain metastases from lung adenocarcinoma: early response and dosimetric evaluation. Technol Cancer Res Treat. 2016; 15 (1): 122129. DOI: 10.1177/1533034614566993.CrossRefGoogle ScholarPubMed
Awad, R, Fogarty, G, Hong, A, et al. Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases—the first Australian experience. Radiat Oncol. 2013; 8: 62. DOI: 10.1186/1748-717X-8-62.CrossRefGoogle ScholarPubMed
Giaj Levra, N, Sicignano, G, Fiorentino, A, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for brain metastases: a dosimetric volumetric-modulated arc therapy study. Radiol Medica. 2016; 121 (1): 6069. DOI: 10.1007/s11547-015-0563-8.Google ScholarPubMed