Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:28:32.766Z Has data issue: false hasContentIssue false

Whistler instability in plasmas with anisotropic and non-Maxwellian velocity distributions

Published online by Cambridge University Press:  13 March 2009

Kai Fong Lee
Affiliation:
Department of Aerospace and Atmospheric Sciences, The Catholic University of America, Washington

Abstract

The instability of right-handed, circularly polarized electromagnetic waves, propagating along an external magnetic field (whistler mode), is studied for electron plasmas with distribution functions peaked at some non-zero value of the transverse velocity. Based on the linearized Vlasov-Maxwell equations, the criteria for instability are given both for non-resonant instabilities arising from distribution functions with no thermal spread parallel to the magnetic field, and for resonant instabilities arising from distribution functions with Maxwellian dependence in the parallel velocities. It is found that, in general, the higher the average perpendicular energy, the more is the plasma susceptible to the whistler instability. These criteria are then applied to a sharply peaked ring distribution, and to loss-cone distributions of the Dory, Guest & Harris (1965) type.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dory, R. A., Guest, G. E. & Harris, E. G. 1965 Phys. Rev. Lett. 14, 131.CrossRefGoogle Scholar
Gross, E. P. 1951 Phys. Rev. 82, 232.CrossRefGoogle Scholar
Gruber, S., Klein, M. W. & Auer, P. L. 1965 Phys. Fluids, 8, 1504.CrossRefGoogle Scholar
Guest, G. E. & Dory, R. A. 1965 Phys. Fluids, 8, 1853.CrossRefGoogle Scholar
Harris, E. G. 1961 J. Nucl. Energy C 2, 138.CrossRefGoogle Scholar
Landau, L. D. 1946 J. Phys. (U.S.S.R.), 10, 25.Google Scholar
Lee, K. F. 1971 Appl. Phys. Lett. 18, 463.CrossRefGoogle Scholar
Malmfors, K. G. 1950 Ark. Fys. 1, 569.Google Scholar
Noerdlinger, P. D. 1963 Ann. Phys. 22, 12.CrossRefGoogle Scholar
Rosenbluth, M. N. & Post, R. F. 1965 Phys. Fluids, 8, 547.CrossRefGoogle Scholar
Scharer, J. E. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.CrossRefGoogle Scholar
Schmidt, G. 1966 Physics of High Temperature Plasmas. Academic.Google Scholar
Sen, H. K. 1952 Phys. Rev. 88, 816.CrossRefGoogle Scholar
Seidl, M. 1970 Phys. Fluids, 13, 966.CrossRefGoogle Scholar
Sudan, R. N. 1963 Phys. Fluids, 6, 57.CrossRefGoogle Scholar
Sudan, R. N. 1965 Phys. Fluids, 8, 153.CrossRefGoogle Scholar
Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar