Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:58:22.189Z Has data issue: false hasContentIssue false

Weibel instabilities in dense quantum plasmas

Published online by Cambridge University Press:  01 August 2008

LEVAN N. TSINTSADZE
Affiliation:
Department of Plasma Physics, Institute of Physics, Tbilisi, Georgia
P. K. SHUKLA
Affiliation:
Institute für Theoretische Physik IV, Ruhr-Universität Bochum, Bochum, Germany SUPA Department of Physics, University of Strathclyde, Glasgow, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quantum effect on the Weibel instability in an unmagnetized plasma is presented. Our analysis shows that the quantum effect tends to stabilize the Weibel instability in the hydrodynamic regime, whereas it produces a new oscillatory instability in the kinetic regime. A novel effect called the quantum damping, which is associated with the Landau damping, is disclosed. The new quantum Weibel instability may be responsible for the generation of non-stationary magnetic fields in compact astrophysical objects as well as in the forthcoming intense laser–solid density plasma interaction experiments.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

[1]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
[2]Estabrook, K. 1978 Phys. Rev. Lett. 41, 1808.CrossRefGoogle Scholar
[3]Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697.CrossRefGoogle Scholar
Schlickeiser, R. and Shukla, P. K. 2003 Astrophys. J. 599, L57.CrossRefGoogle Scholar
Nishikawa, K.-I., Hardee, R., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys. J. 622, 927.CrossRefGoogle Scholar
[4]Davidson, R. C., Hammer, D., Haber, I. and Wagner, C. E. 1972 Phys. Fluids 15, 317.CrossRefGoogle Scholar
[5]Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 581.CrossRefGoogle Scholar
[6]Gardner, C. L. and Ringhofer, C. 1996 Phys. Rev. E 53, 157.Google Scholar
[7]Wigner, E. P. 1932 Phys. Rev. 40, 749.CrossRefGoogle Scholar
[8]Manfredi, G. and Haas, F. 2001 Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Comm. 46, 263.Google Scholar
Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
[9]Klimontovich, Yu. L. and Silin, V. P. 1952 Zh. Eksp. Teor. Fiz. 23 151.Google Scholar
[10]Pines, D. 1961 J. Nucl. Energy C: Plasma Phys. 2, 5.CrossRefGoogle Scholar
[11]Kuzelev, M. V. and Rukhadze, A. A. 1999 Phys. Usp. 42 603.CrossRefGoogle Scholar
[12]Bret, A. 2007 Phys. Plasmas 14, 084503.CrossRefGoogle Scholar
[13]Haas, F. 2008 Phys. Plasmas 15, 022104.CrossRefGoogle Scholar